基本不等式课件推荐

基本不等式课件推荐。

老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“基本不等式课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

基本不等式课件 篇1

在前两节课的研究当中,学生已掌握了一些简单的不等式及其应用,并能用不等式及不等式组抽象出实际问题中的不等量关系,掌握了不等式的一些简单性质与证明,研究了一元二次不等式及其解法,学习了二元一次不等式(组)与简单的线性规划问题。本节课的研究是前三大节学习的延续和拓展。另外,为基本不等式的应用垫定了坚实的基础,所以说,本节课是起到了承上启下的作用。本节课是通过让学生观察第24届国际数学家大会的会标图案中隐含的相等关系与不等关系而引入的通过分析得出基本不等式,然后从三种角度对基本不等式展开证明及对基本不等式展开一些简单的应用,进而更深一层次地从理性角度建立不等观念。教师应作好点拨,利用几何背景,数形结合做好归纳总结、逻辑分析,并鼓励学生从理性角度去分析探索过程,进而更深层次理解基本不等式,鼓励学生对数学知识和方法获得过程的探索,同时也能激发学生的学习兴趣,根据本节课的教学内容,应用观察、类比、归纳、逻辑分析、思考、合作交流、探究,得出基本不等式,进行启发、探究式教学并使用投影仪辅助。

教学重点

1、创设代数与几何背景,用数形结合的思想理解基本不等式;

2、从不同角度探索基本不等式的证明过程;

3、从基本不等式的证明过程进一步体会不等式证明的常用思路。

教学难点

1、对基本不等式从不同角度的探索证明;

2、通过基本不等式的证明过程体会分析法的证明思路。

教具准备 多媒体及课件

三维目标

一、知识与技能

1、创设用代数与几何两方面背景,用数形结合的思想理解基本不等式;

2、尝试让学生从不同角度探索基本不等式的证明过程;

3、从基本不等式的证明过程进一步体会不等式证明的常用思路,即由条件到结论,或由结论到条件。

二、过程与方法

1、采用探究法,按照联想、思考、合作交流、逻辑分析、抽象应用的方法进行启发式教学;

2、教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;

3、将探索过程设计为较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。

三、情感态度与价值观

1、通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行归纳、抽象,使学生感受数学、走进数学,培养学生严谨的数学学习习惯和良好的思维习惯;

2、学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;

3、通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣。

教学过程

导入新课

探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗?

(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)

推进新课

师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找?

(沉静片刻)

生 应该先从此图案中抽象出几何图形。

师 此图案中隐含什么样的几何图形呢?哪位同学能在黑板上画出这个几何图形?

(请两位同学在黑板上画。教师根据两位同学的板演作点评)

(其中四个直角三角形没有画全等,不形象、直观。此时教师用投影片给出隐含的规范的几何图形)

师 同学们观察得很细致,抽象出的几何图形比较准确。这说明,我们只要在现有的基础上进一步刻苦努力,发奋图强,也能作出和数学家赵爽一样的成绩。

(此时,每一位同学看上去都精神饱满,信心百倍,全神贯注地投入到本节课的学习中来)

[过程引导]

师 设直角三角形的两直角边的长分别为a、b,那么,四个直角三角形的面积之和与正方形的面积有什么关系呢?

生 显然正方形的面积大于四个直角三角形的面积之和。

师 一定吗?

(大家齐声:不一定,有可能相等)

师 同学们能否用数学符号去进行严格的推理证明,从而说明我们刚才直觉思维的合理性?

生 每个直角三角形的面积为,四个直角三角形的面积之和为2ab。正方形的边长为,所以正方形的面积为a2+b2,则a2+b2≥2ab。

师 这位同学回答得很好,表达很全面、准确,但请大家思考一下,他对a2+b2≥2ab证明了吗?

生 没有,他仍是由我们刚才的直观所得,只是用字母表达一下而已。

师 回答得很好。

(有的同学感到迷惑不解)

师 这样的叙述不能代替证明。这是同学们在解题时经常会犯的错误。实质上,对文字性语言叙述证明题来说,他只是写出了已知、求证,并未给出证明。

(有的同学窃窃私语,确实是这样,并没有给出证明)

师 请同学们继续思考,该如何证明此不等式,即a2+b2≥2ab。

生 采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一个完全平方数,它是非负数,即(a-b)2≥0,所以可得a2+b2≥2ab。

师 同学们思考一下,这位同学的证明是否正确?

生 正确。

[教师精讲]

师 这位同学的证明思路很好。今后,我们把这种证明不等式的思想方法形象地称之为“比较法”,它和根据实数的基本性质比较两个代数式的大小是否一样。

生 实质一样,只是设问的形式不同而已。一个是比较大小,一个是让我们去证明。

师 这位同学回答得很好,思维很深刻。此处的比较法是用差和0作比较。在我们的数学研究当中,还有另一种“比较法”。

(教师此处的设问是针对学生已有的知识结构而言)

生 作商,用商和“1”比较大小。

师 对。那么我们在遇到这类问题时,何时采用作差,何时采用作商呢?这个问题让同学们课后去思考,在解决问题中自然会遇到。

(此处设置疑问,意在激发学生课后去自主探究问题,把探究的思维空间切实留给学生)

[合作探究]

师 请同学们再仔细观察一下,等号何时取到。

生 当四个直角三角形的直角顶点重合时,即面积相等时取等号。

(学生的思维仍建立在感性思维基础之上,教师应及时点拨)

师 从不等式a2+b2≥2ab的证明过程能否去说明。

生 当且仅当(a-b)2=0,即a=b时,取等号。

师 这位同学回答得很好。请同学们看一下,刚才两位同学分别从几何图形与不等式两个角度分析等号成立的条件是否一致。

(大家齐声)一致。

(此处意在强化学生的直觉思维与理性思维要合并使用。就此问题来讲,意在强化学生数形结合思想方法的应用)

板书:

一般地,对于任意实数a、b,我们有a2+b2≥2ab,当且仅当a=b时,等号成立。

[过程引导]

师 这是一个很重要的不等式。对数学中重要的结论,我们应仔细观察、思考,才能挖掘出它的内涵与外延。只有这样,我们用它来解决问题时才能得心应手,也不会出错。

(同学们的思维再一次高度集中,似乎能从不等式a2+b2≥2ab中得出什么。此时,教师应及时点拨、指引)

师 当a>0,b>0时,请同学们思考一下,是否可以用a、b代替此不等式中的a、b。

生 完全可以。

师 为什么?

生 因为不等式中的a、b∈R。

师 很好,我们来看一下代替后的结果。

板书:

即 (a>0,b>0)。

师 这个不等式就是我们这节课要推导的基本不等式。它很重要,在数学的研究中有很多应用,我们常把叫做正数a、b的算术平均数,把ab叫做正数a、b的几何平均数,即两个正数的算术平均数不小于它们的几何平均数。

(此处意在引起学生的重视,从不同的角度去理解)

师 请同学们尝试一下,能否利用不等式及实数的基本性质来推导出这个不等式呢?

(此时,同学们信心十足,都说能。教师利用投影片展示推导过程的填空形式)

要证:,①

只要证a+b≥2,②

要证②,只要证:a+b-2≥0,③

要证③,只要证:④

显然④是成立的,当且仅当a=b时,④中的等号成立,这样就又一次得到了基本不等式。

(此处以填空的形式,突出体现了分析法证明的关键步骤,意在把思维的时空切实留给学生,让学生在探究的基础上去体会分析法的证明思路,加大了证明基本不等式的探究力度)

[合作探究]

老师用投影仪给出下列问题。

如图,AB是圆的直径,点C是AB上一点,AC=a,BC=b。过点C作垂直于AB的弦DD′,连结AD、BD。你能利用这个图形得出基本不等式的几何解释吗?

(本节课开展到这里,学生从基本不等式的证明过程中已体会到证明不等式的常用方法,对基本不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础)

[合作探究]

师 同学们能找出图中与a、b有关的线段吗?

生 可证△ACD ∽△BCD,所以可得。

生 由射影定理也可得。

师 这两位同学回答得都很好,那ab与分别又有什么几何意义呢?

生表示半弦长,表示半径长。

师 半径和半弦又有什么关系呢?

生 由半径大于半弦可得。

师 这位同学回答得是否很严密?

生 当且仅当点C与圆心重合,即当a=b时可取等号,所以也可得出基本不等式 (a>0,b>0)。

课堂小结

师 本节课我们研究了哪些问题?有什么收获?

生 我们通过观察分析第24届国际数学家大会的会标得出了不等式a2+b2≥2ab。

生 由a2+b2≥2ab,当a>0,b>0时,以、分别代替a、b,得到了基本不等式 (a>0,b>0)。进而用不等式的性质,由结论到条件,证明了基本不等式。

生 在圆这个几何图形中我们也能得到基本不等式。

(此处,创造让学生进行课堂小结的机会,目的是培养学生语言表达能力,也有利于课外学生归纳、总结等学习方法、能力的提高)

师 大家刚才总结得都很好,本节课我们从实际情景中抽象出基本不等式。并采用数形结合的思想,赋予基本不等式几何直观,让大家进一步领悟到基本不等式成立的条件是a>0,b>0,及当且仅当a=b时等号成立。在对不等式的证明过程中,体会到一些证明不等式常用的思路、方法。以后,同学们要注意数形结合的思想在解题中的灵活运用。

布置作业

活动与探究:已知a、b都是正数,试探索, ,,的大小关系,并证明你的结论。

分析:(方法一)由特殊到一般,用特殊值代入,先得到表达式的大小关系,再由不等式及实数的性质证明。

(方法二)创设几何直观情景。设AC=a,BC=b,用a、b表示线段CE、OE、CD、DF的长度,由CE>OE>CD>DF可得。

板书设计

基本不等式的证明

一、实际情景引入得到重要不等式

a2+b2≥2ab

二、定理

若a>0,b>0

课后作业:

证明过程探索:

基本不等式课件 篇2

关于基本不等式的主题范文:

基本不等式是数学中非常重要的一道课题,所以我们需要从以下几个方面来对基本不等式进行介绍。

一、基本不等式是什么

基本不等式是指数学中的一个重要定理,它表述的是任意正整数n及n个正数a1,a2,…,an的积与它们的和之间的关系。也就是说,对于任意正整数n和n个正数a1,a2,…,an,有以下不等式成立:

(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n

其中,等式成立当且仅当a1 = a2 = … = an。

二、基本不等式的证明

下面我们来看一下基本不等式的证明过程。

首先,如果我们令Ai = nai和G = (a1 × a2 × … × an)1/n,则我们可以将原不等式转化为:

(a1+a2+…+an)/n ≥ G

接下来,我们来看一下如果证明G ≤ (a1+a2+…+an)/n,那么我们就可以证明基本不等式,因为不等式具有对称性,即如果G ≤ (a1+a2+…+an)/n,则(a1+a2+…+an)/n ≥ G也成立。

接下来,我们证明G ≤ (a1+a2+…+an)/n,即:

(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n

将不等式右边两边平方,得到:

(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n

这时,我们来观察右边的式子,将式子中的每一项都乘以(n-1),得到:

(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n

继续进行简化,得到:

[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n

左边乘以1/n,右边除以(n-1),得到:

(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n

这样我们就完成了基本不等式的证明。

三、基本不等式在实际中的应用

基本不等式在实际中的应用非常广泛,下面我们来看一下其中的几个例子。

1. 求平均数

如果我们已知n个正数的积,需要求它们的平均数,那么根据基本不等式,我们可以得到:

(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n

等式两边都乘以n-1,得到:

a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n

这样我们就可以求得平均数:

(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n

2. 求数列中n个数的积的最大值

假设我们需要从数列{a1, a2, …, an}中选取n个数,求它们的积的最大值。根据基本不等式,我们有:

(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n

因为我们需要求积的最大值,所以当等式左边的和恰好等于n个数的积时,这个积才能取到最大值。因此,我们可以得到:

a1 = a2 = … = an

这样,我们就得到了求数列中n个数的积的最大值的方法。

三、结论

通过对基本不等式的介绍,我们可以发现它不仅仅是一道看似简单的数学题目,而是一个非常重要的定理,有着广泛的应用价值。希望大家能够在今后的学习中更加重视基本不等式,并能够深刻理解它的实际应用。

基本不等式课件 篇3

基本不等式是高中数学中的一个重要概念,具有广泛的应用价值。在本文中,我将从基本不等式的定义、证明、性质及应用四个方面进行阐述。

一、基本不等式的定义

基本不等式是描述两个实数乘积大小关系的不等式,它可以通过数学归纳法来证明。具体来说,对于任意的正整数n,有如下不等式成立:

$(1+\frac{1}{n})^n

其中,e表示自然对数的底数,即e≈2.71828。

二、基本不等式的证明

基本不等式的证明可以利用二项式定理来进行。具体来说,我们可以将(1+1/n)的n次方展开,得到:

$(1+\frac{1}{n})^n = \sum_{k=0}^n {\choose n}{k} \frac{1}{n^k}$

因为${\choose n}{k} = \frac{n!}{k!(n-k)!}$,所以有:

$(1+\frac{1}{n})^n =\frac{n!}{n^n} + \frac{n(n-1)}{2!n^2}+\cdots+\frac{1}{n^n}$

显然,对于k≥2的情况,都有$\frac{{\choose n}{k}}{n^n} \leq \frac{1}{n^2}$。因此,我们可以得到:

$(1+\frac{1}{n})^n

进一步化简得:

$(1+\frac{1}{n})^n

同理可得:

$(1+\frac{1}{n})^{n+1} > \frac{n+1}{n}$

将上述两个不等式带入到基本不等式中,得到:

$(1+\frac{1}{n})^n

证毕。

三、基本不等式的性质

基本不等式具有以下性质:

1. 基本不等式是一个单调递增的函数。

2. 基本不等式适用于所有的正实数。

4. 基本不等式可以推广到一般的n次方。

5. 基本不等式可以用来证明和推导其他数学定理。

四、基本不等式的应用

基本不等式在数学、物理、经济学等领域都有广泛的应用。以下列举几个具体例子:

1. 用基本不等式证明逼近贝塞尔函数的性质。

2. 在物理学中,基本不等式可用于证明波动方程的稳定性。

3. 在经济学中,基本不等式可用于证明市场力量的强度与稳定性。

综上所述,基本不等式是一个重要的数学概念,具有广泛的应用价值。掌握基本不等式的定义、证明、性质及应用,对于提高数学水平和学科交叉研究都有重要作用。

基本不等式课件 篇4

我今天说课的内容是浙教版数学八年级上册第五章第3节《一元一次不等式》的第2课时。下面我从教材分析、教学方法和教学过程等几方面来谈谈我对本节课的理解和设计。

一、教材分析

(一)教材的地位与作用

本节课是学生在学习了一元一次不等式及其解的概念,解简单的一元一次不等式的基础上,对解一元一次不等式的进一步深入和拓展;另一方面,又为学习不等式的应用、函数等知识奠定了基础。鉴于这种认识,我认为本节课不仅有着广泛的应用,而且起着承上启下的作用。

(二)教学目标

知识与能力目标:掌握解一元一次不等式的一般步骤;会运用解一元一次不等式的基本步骤解一元一次不等式。

过程与方法目标:通过学生的观察、独立思考等过程培养学生归纳概括的能力。

情感与态度目标:通过获得用数学知识解决实际问题的成功体验,增强学生学习的自信心。

(三)教学重点难点

基于教学目标,我认为本节课的重点是:运用解一元一次不等式的一般步骤解一元一次不等式。

由于例2的步骤较多,容易发生错误,是为本节课的难点。

二、教学方法

我认为在教学中,要善于调动学生的学习积极性,关注学生的学习过程。本节课我采用启发式,讲练结合的教学方法,让学生手脑并用,合作交流,自主探究。

三、教学过程

为了整体把握教材,构建高效课堂,我设计科一下流程:

复习引入—探究新知—巩固练习拓展新知—目标检测—归纳小结—作业布置,总共7个环节。

(一)复习引入

课件出示:解下列不等式:(1)3-3x>2-4x;(2)3+3x≤4x+8。这两道题是上节课学过的知识,我估计学生能够解决。于是我给学生一定时间让他们自行完成,同时请两位学生上台板演。对照学生的解题过程,教师提问:“解这样的不等式的基本步骤是什么?根据学生的回答,教师及时板书:移项、合并同类项、两边同除以未知数前面的系数。(注:遇负数,不等号的方向改变,与方程的不同之处)现在再看以下两道题:

1.合作学习,根据已学过的知识,你能解下列一元一次不等式吗?

(1)5x>3(x-2)+2(2)2m-3

2.解一元一次不等式与解一元一次方程的步骤类似。解一元一次不等式的一般步骤和根据如下:

步骤根据

1去分母不等式的基本性质3

2去括号单项式乘以多项式法则

3移项不等式的基本性质2

4合并同类项,得ax>b,或ax

5两边同除以a(或乘1/a)不等式的基本性质3

3.例1.解不等式3(1-x)>2(1-2x)

解:去括号,得3-3x>2-4x

移项,得-3x+4x>2-3

合并同类项,得x>-1

4.例2.解不等式(1+x)/2≤(1+2x)/3+1

解:去分母,得3(1+x)≤2(1+2x)+6

去括号,得3+3x≤2+4x+6

移项,得3x-4x≤2+6-3

合并同类项,得-x≤5

两边同除以-1.得x≥-5

注:1.五个步骤要求当堂背出,同桌之间可以互相核对。

2.要求作业严格按照上述步骤进行。

3、课内练习

解下列不等式,并把解在数轴上表示出来:

(1)5x-3

(2)3(1-3x)-2(4-2x)≤0

(3)(2x-1)/4-(1+x)/6≥1

4、小结:

1.解一元一次不等式的基本步骤。

2.不等式的解在数轴上的表示方法。

《一元一次不等式》的教学反思

本节内容是一元一次不等式组的基础。现对本节课从以下几方面进行反思:

一、课堂教学结构反思

本节课通过复习解一元一次不等式以及在数轴上表示解集开始引入新的问题,学生通过对新问题的讨论、交流与研究,明确了方法与注意事项,并为利用一元一次不等式解决实际问题作了铺垫。这样的程序符合学生的认知规律,教学取得了不错的效果。适时地由学生自己合作、交流,归纳出一般性的方法,对于学生从整体上把握知识以及养成总结的习惯是大有帮助的。

二、有效的课堂提问反思

复习旧知识的提问,可以加深对本课知识的理解,又能更好地巩固前面的内容,起到承上启下的作用。提问过程中可以达到师生间的相互交流。教学提问中,比如:不等式的基本性质是什么?不等式的概念是什么?不等式的解是什么?学生在理解解一元一次方程步骤的基础上,类比解一元一次不等式的步骤就有了进一步的认识。由于学生的基础比较差,课堂教学提问中,由易到难,深入浅出,尽可能让学生学会、会学、会做。

三、有效的课堂参与反思

本节课我从复习旧知识,提问,动手操作,合作交流、形成共识的基础上,过渡到一元一次不等式更一般的情况。在课堂活动中经历、感悟知识的生成、发展与变化过程,重在学生参与完成。通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己理清思路、板书过程,锻炼学生语言表达能力和书写能力,激发了学生学习积极性,培养学生的参与意识和合作意识,学生在各个环节中,运用所学的知识解决问题,进而达到知识的理解和掌握,使学生真正参与到知识形成发展过程中来。

本节课较好的方面:

1.本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;

2.课程内容前后呼应,前面练习能够为后面的例题作准备。

3.及时对学生学习的知识进行检查。

4.对过去遗留的问题,如:去括号时出现符号错误,去分母是漏乘,系数花1时分子与分母倒了等等问题,在课堂巡视时,发现问题并及时纠正,使学生在典型错误中吸取教训。

不足方面:课容量少,留给学生自己独立思考,讨论的时间较少。课堂上没有发挥学生的力量,开展“生帮生”的活动。在课堂上没有做到尝试着少说,给学生留些自由发展的空间。设计的教学环节,也没有多思考一些学生的所想所做,真正做好学生前进道路上的引导者。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。

基本不等式课件 篇5

各位评委老师,上午好,我选择的课题是必修5第三章第四节《基本不等式》第一课时。关于本课的设计,我将从以下五个方面向各位评委老师汇报。

一、教材分析

◆本节教材的地位和作用

◆教学目标

◆教学重点、难点

1、本节教材的地位和作用

"基本不等式" 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完"不等式的性质"、"不等式的解法"及"线性规划"的基础上对不等式的进一步研究。在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。

2、 教学目标

(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。

(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。

(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。

3、教学重点、难点

根据课程标准制定如下的教学重点、难点

重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。

难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。

二、教法说明

本节课借助几何画板,使用多媒体辅助进行直观演示。采用启发式教学法创设问题情景,激发学生开始尝试活动。运用生活中的实际例子,让学生享受解决实际问题的乐趣。 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。

三、学法指导

为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。

四、教学设计

◆运用2002年国际数学家大会会标引入

◆运用分析法证明基本不等式

◆不等式的几何解释

◆基本不等式的应用

1、运用2002年国际数学家大会会标引入

如图,这是在北京召开的第24届国际数学家大会会标。会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)

正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_

从图形中易得,s≥s’,即

问题1:它们有相等的情况吗?何时相等?

问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解)

一般地,对于任意实数a、b,我们有

当且仅当(重点强调)a=b时,等号成立(合情推理)

问题3:你能给出它的证明吗?(让学生独立证明)

设计意图

(1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。

(2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。

(3)三个思考题为学生创造情景,逐层深入,强化理解。

2、运用分析法证明基本不等式

如果 a>0,b>0 ,

用 和 分别代替a,b.可以得到

也可写成

(强调基本不等式成立的前提条件"正")(演绎推理)

问题4:你能用不等式的性质直接推导吗?

要证 ①

只要证 ②

要证② ,只要证 ③

要证③ ,只要证 ④

显然, ④是成立的。当且仅当a=b时, 不等式中的等号成立。

(强调基本不等式取等的条件"等")

设计意图

(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;

(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;

(3)此种证明方法是"分析法",在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。

3、不等式的几何解释

如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为

问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解)

设计意图

几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。

4、基本不等式的应用

例1.证明

(学生自己证明)

设计意图

(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习"分析法"证明不等式的过程;

(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式;

(3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。

例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小?

(2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?

(让学生分组合作、探究完成)

设计意图

(1)此题目利用基本不等式求最值,包含正用,逆用,体现了基本不等式的应用价值;

(2)强调利用不等式求最值的关键点:"正""定""等";

(3)有利于培养学生团结合作的精神。

练习 :(1)若a,b同号,则

(2)P113 练习1.2

设计意图

巩固基本不等式,让学生熟悉公式,并学会应用。

小结:(让学生畅所欲言)

设计意图

有利于发挥学生的主观能动性,突出学生的主体地位。

作业: 必做题:P 113 A组3、4

选做题:

设计意图

(1)必做题是让学生巩固所学知识,熟练公式应用,强化学生基础知识、基本技能的形成;

(2)选做题达到分层教学的目的,根据学生的实际情况,对他们进行素质教育。

时间安排:引入约5分钟

证明基本不等式约10分钟

几何意义约10分钟

知识应用约15分钟

小结约5分钟

五、板书设计

分析法证明

几何解释

例题讲解

小结

作业

例2

以上是我对这节课的教学设计,恳请各位评委老师指导,谢谢!

基本不等式课件 篇6

基本不等式是初中数学中的一个重要知识点,也是高中数学的基础。通过学习基本不等式,不仅可以帮助我们更加深入地理解不等式的性质,而且可以提高我们解决实际问题的能力。下面就让我们一起来探讨一下关于基本不等式的相关主题吧。

一、基本不等式的定义及应用

基本不等式是数学中常见的一种不等式形式,其具体定义为:对于正整数n和任意实数a1,a2,......,an,有下列不等式成立。

(a1+a2+......+an)/n ≥√(a1×a2×......×an)

基本不等式的应用非常广泛,涵盖了数学、物理、工程等多个领域。例如,在散装粉尘瓶装问题中,如果散装粉尘数量恒定,而瓶装数量不同,那么最节省费用的方案就是让每个瓶子装入等量的粉尘,即每个瓶子所用的费用最省。

基本不等式在数学中的应用也很广泛,例如,在证明一个三角形的角度之和等于180度的问题时,就可以使用基本不等式。

二、基本不等式的证明方法

基本不等式的证明方法有多种,下面就介绍其中较为常见的两种方法。

1. 通过平均数和平均数的平方差证明

将左右两边分别设为(a1+a2+......+an)/n和√(a1×a2×......×an),设它们的算数平均数为A,几何平均数为G,即

A=(a1+a2+......+an)/n

G=√(a1×a2×......×an)

那么,可以得出以下结论:

四倍平均数的平方比四倍几何平均数的平方不小于1,即

4A²≥4nG²

化简得(A-G)²≥0

而(A-G)²≥0 是显然成立的,因此基本不等式得证。

2. 通过对数和的差证明

对(a1+a2+......+an)/n 和√(a1×a2×......×an)取对数,得到

ln((a1+a2+......+an)/n)和

0.5ln(a1×a2×......×an)

令b1,b2,......,bn 为Ln(a1),ln(a2),......,ln(an)

则上式变为(b1+b2+......+bn)/n 和 0.5(b1+b2+......+bn)

那么,可以得出以下结论:

平方并减去平方和的差的一半,恒大于或等于0,即

n(e^b1+e^b2+......+e^bn)≥(e^b1×e^b2×......×e^bn)⁰·⁵

简化得:(a1+a2+......+an)/n ≥√(a1×a2×......×an)

因此,基本不等式得证。

三、基本不等式的推论

基本不等式在解决实际问题时非常有用,不仅可以帮助我们更好地理解不等式的性质,还可以推导出一些有用的结论。

1. 美国数学家霍尔德(K.O.Holder)在1889年提出了一个推论,称为Holder不等式,它的思想是:如果一个积分或求和中的各项乘方幂次之和相等,那么乘积的值最大时,每个变量的值相对都相等,即

a^p1×b^p2×......×z^pz ≤p1a1+p2b2+......+pnzn

其中p1,p2,......,pn均为正数。

2. 在证明柯西定理时,我们可以推导出柯西-施瓦茨不等式,即

(∑ai²)(∑bi²)≥(∑aibi)²

3. 可以证明,任何一个n次实系数多项式都可以表示为n个线性因式的积,其中每个线性因式都可以表示为两个实系数一次多项式(例如:x-a)的乘积。

以上就是关于基本不等式的相关主题的详细介绍,希望能够帮助大家更好地理解和掌握这一数学知识点。

基本不等式课件 篇7

【教学目标】

1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

2.过程与方法:通过实例探究抽象基本不等式;

3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;

【教学难点】

基本不等式 等号成立条件

【教学过程】

1.课题导入

基本不等式 的几何背景:

如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?

教师引导学生从面积的关系去找相等关系或不等关系

2.讲授新课

1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。

2.得到结论:一般的,如果

3.思考证明:你能给出它的证明吗?

证明:因为

所以, ,即

4.1)从几何图形的面积关系认识基本不等式

特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,

通常我们把上式写作:

2)从不等式的性质推导基本不等式

用分析法证明:

要证 (1)

只要证 a+b (2)

要证(2),只要证 a+b- 0 (3)

要证(3),只要证 ( - ) (4)

显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。

3)理解基本不等式 的几何意义

探究:课本第98页的“探究”

在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b。过点C作垂直于AB的弦DE,连接AD、BD。你能利用这个图形得出基本不等式 的几何解释吗?

易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB

即CD= .

这个圆的半径为 ,显然,它大于或等于CD,即 ,其中当且仅当点C与圆心重合,即a=b时,等号成立。

因此:基本不等式 几何意义是“半径不小于半弦”

评述:1.如果把 看作是正数a、b的等差中项, 看作是正数a、b的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项。

2.在数学中,我们称 为a、b的算术平均数,称 为a、b的几何平均数。本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数。

例1 已知x、y都是正数,求证:

(1) ≥2;

(2)(x+y)(x2+y2)(x3+y3)≥8x3y3.

分析:在运用定理: 时,注意条件a、b均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形。

解:∵x,y都是正数 ∴ >0, >0,x2>0,y2>0,x3>0,y3>0

(1) =2即 ≥2.

(2)x+y≥2 >0 x2+y2≥2 >0 x3+y3≥2 >0

∴(x+y)(x2+y2)(x3+y3)≥2 ·2 ·2 =8x3y3

即(x+y)(x2+y2)(x3+y3)≥8x3y3.

3.随堂练习

1.已知a、b、c都是正数,求证

(a+b)(b+c)(c+a)≥8abc

分析:对于此类题目,选择定理: (a>0,b>0)灵活变形,可求得结果。

解:∵a,b,c都是正数

∴a+b≥2 >0

b+c≥2 >0

c+a≥2 >0

基本不等式课件 篇8

[教学目标]

依据《新标准》对《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:

1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题(求最值、证明不等式);培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、不等式的证明)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

二、 [教学重点]

基本不等式 的证明过程及应用。

三、 [教学难点]

1、基本不等式成立时的三个限制条件(简称一正、二定、三相等)的正确理解;

2、灵活利用基本不等式求解实际问题中的最大值和最小值。

四、 [教学方法]

本节课采启发诱导、讲练结合的教学方法,结合现代信息技术多媒体课件、几何画板作为教学辅助手段,加深学生对基本不等式的理解。

[教学用具]

多媒体、几何画板

六、 [教学过程]

教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

具体过程安排如下:

(一)、创设情景,提出问题;

上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?

利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。

同时,(几何画板辅助教学)通过几何画板演示,

让学生更直观的抽象、归纳出结论:

(二)、抽象归纳:

一般地,对于任意实数 ,有 ,当且仅当 时,等号成立。

[问] 你能给出它的证明吗?

学生在黑板上板书。

特别地,当 时,在不等式 中,以 、 分别代替 ,得到什么?

答案: 。

【归纳总结】

如果 都是正数,那么 ,当且仅当 时,等号成立。

我们称此不等式为基本不等式。 其中 称为 的算术平均数, 称为 的几何平均数。

(三)、理解升华:

1、文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

2、符号语言叙述:

若 ,则有 ,当且仅当 时, 。

[问] 怎样理解“当且仅当”?

3、探究基本不等式证明方法:

[问] 如何证明基本不等式?

方法一:作差比较或由 展开证明。

方法二:分析法。

分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。

4、探究基本不等式的几何意义:

读书破万卷下笔如有神,以上就是一米范文范文为大家带来的3篇《2023高中数学基本不等式教学教案》,希望对您有一些参考价值。

基本不等式课件 篇9

教学目的

掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。

教学过程

师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

第一组:1+2=3; a+b=b+a; S =ab; 4+x =7。

第二组:-7 1+4; 2x ≤6, a+2 ≥0; 3≠4。

生:第一组都是等式,第二组都是不等式。

师:那么,什么叫做等式?什么叫做不等式?

生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?

生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。

师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

练习1 (回答)用小于号“”填空。

(1)7 ___ 4;

(2)- 2____6;

(3)- 3_____ -2;

(4)- 4_____-6

练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

7>4;-2<6;-3<-2;-4>-6。

师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:

性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。

(让同学回答。)

性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)

性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)

现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。

不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

师:对a和b有什么要求吗?对c有什么要求?

生:没有什么要求。

师:哪位同学来回答第二、三条性质?

生甲:如果a0, 那么acb,且c>0,那么ac>bc(或

生乙:如果abc(或 );如果a>b,且cb,且c>0,那么ac>bd;(2)如果a>b,那么ac2>bc2;(3)如果ac2>bc2,那么a>b;(4)如果a>b,那么a-b>0;(5)如果ax>b,且a≠0,那么xa;生甲:(1)不对,当c=d≤0时,ac>bd不成立。生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2>bc2不成立。生丙:(3)对,因为ac2>bc2成立,则c2一定大于零,根据不等式基本性质2,得a>b出。(4)对,根据不等式基本性质,由a>b,两边减去b得a-b>0。(5)不对,当a<0时,根据不等式基本性质3,得。(6)不对,因为当b<0时,根据不等式基本性质1,得a+b<a;而当b=0时,则有a+b=a。师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。课外做以下作业:略。教案说明(1) 不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。(2) 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。(3) 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

基本不等式课件 篇10

基本不等式是中学数学的重要概念之一,它在数学中有广泛的应用,是其他不等式的基础和重要工具。本篇文章将围绕基本不等式展开,探讨其相关概念,证明方法和实际应用。

一、基本不等式的概念

基本不等式是指一个数列的平均值大于等于它的几何平均值,即对于任意正整数$n$和正实数$x_1, x_2, ..., x_n$,有$\dfrac{x_1+x_2+...+x_n}{n} \geqslant \sqrt[n]{x_1x_2...x_n}$。

该不等式的意义在于,对于$n$个数的平均数,它越接近各个数的几何平均数,这些数的值的差距就越小。因此,基本不等式可以用来估计一组数据的分布情况和误差范围。

二、基本不等式的证明方法

基本不等式的证明方法有多种,其中比较流行的是数学归纳法和均值不等式法。下面将分别进行讲解。

1. 数学归纳法

(1) 当$n=2$时,我们有$\dfrac{x_1+x_2}{2} \geqslant \sqrt{x_1x_2}$,即$(x_1-x_2)^2 \geqslant 0$,显然成立。

(2) 假设当$n=k$时成立,即$\dfrac{x_1+x_2+...+x_k}{k} \geqslant \sqrt[k]{x_1x_2...x_k}$,现在我们来证明当$n=k+1$时也成立,即$\dfrac{x_1+x_2+...+x_k+x_{k+1}}{k+1} \geqslant \sqrt[k+1]{x_1x_2...x_kx_{k+1}}$。

将不等式两边同乘以$k+1$得到$k\dfrac{x_1+x_2+...+x_k}{k}+(x_{k+1}) \geqslant \sqrt[k+1]{x_1x_2...x_k} \cdot (k\dfrac{x_1+x_2+...+x_k}{k})^\dfrac{1}{k} \cdot x_{k+1}^\dfrac{1}{k+1}$。

根据均值不等式和归纳假设,有$k\dfrac{x_1+x_2+...+x_k}{k} \geqslant \sqrt[k]{x_1x_2...x_k} \geqslant x_{k+1}^\dfrac{1}{k}$,将其代入原式得到$k\dfrac{x_1+x_2+...+x_k}{k}+x_{k+1} \geqslant (k+1) \cdot \sqrt[k+1]{x_1x_2...x_kx_{k+1}}$。

由此证明当$n=k+1$成立。

2. 均值不等式法

通过均值不等式可得:

$\dfrac{x_1+x_2+...+x_n}{n} \geqslant \sqrt[n]{x_1x_2...x_n}$

$\dfrac{(x_1+x_2+...+x_n)(\dfrac{1}{x_1}+\dfrac{1}{x_2}+...+\dfrac{1}{x_n})}{n^2} \geqslant \dfrac{(n\dfrac{1}{\sqrt[n]{x_1x_2...x_n}})^2}{n^2}$

$x_1x_2...x_n(\dfrac{1}{x_1}+\dfrac{1}{x_2}+...+\dfrac{1}{x_n}) \geqslant n^2$

由此证明基本不等式成立。

三、基本不等式的实际应用

基本不等式在很多领域中都有广泛应用。

1. 经济学

基本不等式可以用于证明一个国家的经济发展水平,即该国的平均经济水平越高,其经济增长率越高。这对于财经政策的制定和实施具有重要意义。

2. 物理学

基本不等式也可以被应用到物理学中。例如,它可以描绘热力学中的热力学势函数和热力学系统间的温度规律。

3. 统计学

在统计学中,基本不等式可以用于证明一个样本数据集的方差越大,样本数据之间的差距就越大;反之亦然。

总的来说,基本不等式是数学中非常重要的一个概念。它不仅具有理论表述和证明,还能被应用在实际生活和自然界的各个领域中。相信在以后的学习生活中,基本不等式会成为越来越重要的知识点。

基本不等式课件 篇11

基本不等式是初中数学中重要的一章内容,也是高中数学和竞赛数学的基础。基本不等式的学习不仅有助于提高学生的数学素养和解题能力,同时也能帮助他们提高逻辑思维能力。本文旨在探讨“基本不等式”这一主题。

一、基本不等式的定义与性质

基本不等式是说:对于正实数x1,x2,…,xn,有

(x1+x2+…+xn)/n≥√(x1x2…xn),当且仅当x1=x2=…=xn时等号成立。

基本不等式的性质有以下几条:

(1)当n为偶数时,等号成立;

(2)当n为奇数时,当且仅当所有数相等时等号成立;

(3)两个数的平均数不小于它们的几何平均数,即(a+b)/2≥√(ab),其中a,b均为正实数且a≠b;

(4)当n≥3时,三个数的平均数不小于它们的几何平均数,即(a+b+c)/3≥√(abc),其中a,b,c均为正实数且a≠b≠c。

二、基本不等式的应用

基本不等式作为一种重要的数学工具,可以应用于众多问题之中。以下是基本不等式的一些常见应用。

1. 求和式的最小值

例题1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均为正数,并且x1+x2+x3+x4+x5≥5,则x1x2x3x4x5的最小值为多少?

解法:根据已知条件,设x1+x2+x3+x4+x5=5+m(其中m≥0),则有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:

(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5

移项得到x1x2x3x4x5≥1,则x1x2x3x4x5的最小值为1。

2. 比较函数大小

例题2:比较函数f(x)=√(a²+x²)+√(b²+(c-x)²)(a,b,c>0)在[0,c]上的最小和最大值。

解法:根据已知条件和基本不等式,将f(x)分解成两个正数的平均数不小于它们的几何平均数的形式,即

f(x)=[√(a²+x²)+√(b²+(c-x)²)]/2+1/2[√(a²+x²)+√(b²+(c-x)²)]

≥√[(√(a²+x²)×√(b²+(c-x)²)]+1/2(2c)

=√(a²+b²+c²+ab-ac-bc)+c

当x=c/3时等号成立,即f(x)的最小值为√(a²+b²+c²+ab-ac-bc)+c,最大值为√(a²+b²+c²+ab+ac+bc)+c。

3. 求极限

例题3:已知数列{a_n}(n≥1)的通项公式为a_n=(√n+1)/(n+1),则求∑(n从1到∞)a_n的极限。

解法:根据基本不等式,有

a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n

代入已知条件,可得:

a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)

= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)

极限为1/2。

4. 求证不等式

例题4:已知a,b,c为正实数,且a+b+c=1,证明∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)。

解法:将不等式化简,得:

∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)

⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a²+b²+c²)/(ab+bc+ca)

⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)²-(ab+bc+ca)]/(ab+bc+ca)

由于a+b+c=1,有

(ab+bc+ca)≤a²+b²+c²,

(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)²/(a(1-a)+b(1-b)+c(1-c))≥3(a²+b²+c²)/(ab+bc+ca)

其中第一个不等式成立是因为当a=b=c=1/3时,等号成立;第二个不等式用到了基本不等式的形式。

综上所述,基本不等式是数学中的重要概念,掌握了基本不等式的定义、性质和应用方法,将有助于提高人们的数学素养和解题能力。在日常生活和学习中,要重视基本不等式的学习和应用,逐步提高自己的数学水平。

基本不等式课件 篇12

基本不等式作为高中数学必修内容之一,在学生学习中扮演着极为重要的角色。本篇文章将围绕基本不等式,探讨它的概念、性质、证明方法及应用,并展示基本不等式的魅力和实用性。

一、基本不等式的概念

基本不等式是指对于任意正实数 $a_1,a_2,\cdots,a_n$ 和任意正整数 $n$,有以下不等式成立:

$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

这个不等式也被称为均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示这些数的算术平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示这些数的几何平均值。均值不等式的意义在于,算术平均数大于等于几何平均数。

二、基本不等式的性质

基本不等式有以下几个性质:

1. 当且仅当 $a_1=a_2=\cdots=a_n$ 时等号成立。

2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一个数为 id="article-content1">

基本不等式课件推荐。

老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“基本不等式课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

基本不等式课件 篇1

在前两节课的研究当中,学生已掌握了一些简单的不等式及其应用,并能用不等式及不等式组抽象出实际问题中的不等量关系,掌握了不等式的一些简单性质与证明,研究了一元二次不等式及其解法,学习了二元一次不等式(组)与简单的线性规划问题。本节课的研究是前三大节学习的延续和拓展。另外,为基本不等式的应用垫定了坚实的基础,所以说,本节课是起到了承上启下的作用。本节课是通过让学生观察第24届国际数学家大会的会标图案中隐含的相等关系与不等关系而引入的通过分析得出基本不等式,然后从三种角度对基本不等式展开证明及对基本不等式展开一些简单的应用,进而更深一层次地从理性角度建立不等观念。教师应作好点拨,利用几何背景,数形结合做好归纳总结、逻辑分析,并鼓励学生从理性角度去分析探索过程,进而更深层次理解基本不等式,鼓励学生对数学知识和方法获得过程的探索,同时也能激发学生的学习兴趣,根据本节课的教学内容,应用观察、类比、归纳、逻辑分析、思考、合作交流、探究,得出基本不等式,进行启发、探究式教学并使用投影仪辅助。

教学重点

1、创设代数与几何背景,用数形结合的思想理解基本不等式;

2、从不同角度探索基本不等式的证明过程;

3、从基本不等式的证明过程进一步体会不等式证明的常用思路。

教学难点

1、对基本不等式从不同角度的探索证明;

2、通过基本不等式的证明过程体会分析法的证明思路。

教具准备 多媒体及课件

三维目标

一、知识与技能

1、创设用代数与几何两方面背景,用数形结合的思想理解基本不等式;

2、尝试让学生从不同角度探索基本不等式的证明过程;

3、从基本不等式的证明过程进一步体会不等式证明的常用思路,即由条件到结论,或由结论到条件。

二、过程与方法

1、采用探究法,按照联想、思考、合作交流、逻辑分析、抽象应用的方法进行启发式教学;

2、教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;

3、将探索过程设计为较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。

三、情感态度与价值观

1、通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行归纳、抽象,使学生感受数学、走进数学,培养学生严谨的数学学习习惯和良好的思维习惯;

2、学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;

3、通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣。

教学过程

导入新课

探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗?

(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)

推进新课

师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找?

(沉静片刻)

生 应该先从此图案中抽象出几何图形。

师 此图案中隐含什么样的几何图形呢?哪位同学能在黑板上画出这个几何图形?

(请两位同学在黑板上画。教师根据两位同学的板演作点评)

(其中四个直角三角形没有画全等,不形象、直观。此时教师用投影片给出隐含的规范的几何图形)

师 同学们观察得很细致,抽象出的几何图形比较准确。这说明,我们只要在现有的基础上进一步刻苦努力,发奋图强,也能作出和数学家赵爽一样的成绩。

(此时,每一位同学看上去都精神饱满,信心百倍,全神贯注地投入到本节课的学习中来)

[过程引导]

师 设直角三角形的两直角边的长分别为a、b,那么,四个直角三角形的面积之和与正方形的面积有什么关系呢?

生 显然正方形的面积大于四个直角三角形的面积之和。

师 一定吗?

(大家齐声:不一定,有可能相等)

师 同学们能否用数学符号去进行严格的推理证明,从而说明我们刚才直觉思维的合理性?

生 每个直角三角形的面积为,四个直角三角形的面积之和为2ab。正方形的边长为,所以正方形的面积为a2+b2,则a2+b2≥2ab。

师 这位同学回答得很好,表达很全面、准确,但请大家思考一下,他对a2+b2≥2ab证明了吗?

生 没有,他仍是由我们刚才的直观所得,只是用字母表达一下而已。

师 回答得很好。

(有的同学感到迷惑不解)

师 这样的叙述不能代替证明。这是同学们在解题时经常会犯的错误。实质上,对文字性语言叙述证明题来说,他只是写出了已知、求证,并未给出证明。

(有的同学窃窃私语,确实是这样,并没有给出证明)

师 请同学们继续思考,该如何证明此不等式,即a2+b2≥2ab。

生 采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一个完全平方数,它是非负数,即(a-b)2≥0,所以可得a2+b2≥2ab。

师 同学们思考一下,这位同学的证明是否正确?

生 正确。

[教师精讲]

师 这位同学的证明思路很好。今后,我们把这种证明不等式的思想方法形象地称之为“比较法”,它和根据实数的基本性质比较两个代数式的大小是否一样。

生 实质一样,只是设问的形式不同而已。一个是比较大小,一个是让我们去证明。

师 这位同学回答得很好,思维很深刻。此处的比较法是用差和0作比较。在我们的数学研究当中,还有另一种“比较法”。

(教师此处的设问是针对学生已有的知识结构而言)

生 作商,用商和“1”比较大小。

师 对。那么我们在遇到这类问题时,何时采用作差,何时采用作商呢?这个问题让同学们课后去思考,在解决问题中自然会遇到。

(此处设置疑问,意在激发学生课后去自主探究问题,把探究的思维空间切实留给学生)

[合作探究]

师 请同学们再仔细观察一下,等号何时取到。

生 当四个直角三角形的直角顶点重合时,即面积相等时取等号。

(学生的思维仍建立在感性思维基础之上,教师应及时点拨)

师 从不等式a2+b2≥2ab的证明过程能否去说明。

生 当且仅当(a-b)2=0,即a=b时,取等号。

师 这位同学回答得很好。请同学们看一下,刚才两位同学分别从几何图形与不等式两个角度分析等号成立的条件是否一致。

(大家齐声)一致。

(此处意在强化学生的直觉思维与理性思维要合并使用。就此问题来讲,意在强化学生数形结合思想方法的应用)

板书:

一般地,对于任意实数a、b,我们有a2+b2≥2ab,当且仅当a=b时,等号成立。

[过程引导]

师 这是一个很重要的不等式。对数学中重要的结论,我们应仔细观察、思考,才能挖掘出它的内涵与外延。只有这样,我们用它来解决问题时才能得心应手,也不会出错。

(同学们的思维再一次高度集中,似乎能从不等式a2+b2≥2ab中得出什么。此时,教师应及时点拨、指引)

师 当a>0,b>0时,请同学们思考一下,是否可以用a、b代替此不等式中的a、b。

生 完全可以。

师 为什么?

生 因为不等式中的a、b∈R。

师 很好,我们来看一下代替后的结果。

板书:

即 (a>0,b>0)。

师 这个不等式就是我们这节课要推导的基本不等式。它很重要,在数学的研究中有很多应用,我们常把叫做正数a、b的算术平均数,把ab叫做正数a、b的几何平均数,即两个正数的算术平均数不小于它们的几何平均数。

(此处意在引起学生的重视,从不同的角度去理解)

师 请同学们尝试一下,能否利用不等式及实数的基本性质来推导出这个不等式呢?

(此时,同学们信心十足,都说能。教师利用投影片展示推导过程的填空形式)

要证:,①

只要证a+b≥2,②

要证②,只要证:a+b-2≥0,③

要证③,只要证:④

显然④是成立的,当且仅当a=b时,④中的等号成立,这样就又一次得到了基本不等式。

(此处以填空的形式,突出体现了分析法证明的关键步骤,意在把思维的时空切实留给学生,让学生在探究的基础上去体会分析法的证明思路,加大了证明基本不等式的探究力度)

[合作探究]

老师用投影仪给出下列问题。

如图,AB是圆的直径,点C是AB上一点,AC=a,BC=b。过点C作垂直于AB的弦DD′,连结AD、BD。你能利用这个图形得出基本不等式的几何解释吗?

(本节课开展到这里,学生从基本不等式的证明过程中已体会到证明不等式的常用方法,对基本不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础)

[合作探究]

师 同学们能找出图中与a、b有关的线段吗?

生 可证△ACD ∽△BCD,所以可得。

生 由射影定理也可得。

师 这两位同学回答得都很好,那ab与分别又有什么几何意义呢?

生表示半弦长,表示半径长。

师 半径和半弦又有什么关系呢?

生 由半径大于半弦可得。

师 这位同学回答得是否很严密?

生 当且仅当点C与圆心重合,即当a=b时可取等号,所以也可得出基本不等式 (a>0,b>0)。

课堂小结

师 本节课我们研究了哪些问题?有什么收获?

生 我们通过观察分析第24届国际数学家大会的会标得出了不等式a2+b2≥2ab。

生 由a2+b2≥2ab,当a>0,b>0时,以、分别代替a、b,得到了基本不等式 (a>0,b>0)。进而用不等式的性质,由结论到条件,证明了基本不等式。

生 在圆这个几何图形中我们也能得到基本不等式。

(此处,创造让学生进行课堂小结的机会,目的是培养学生语言表达能力,也有利于课外学生归纳、总结等学习方法、能力的提高)

师 大家刚才总结得都很好,本节课我们从实际情景中抽象出基本不等式。并采用数形结合的思想,赋予基本不等式几何直观,让大家进一步领悟到基本不等式成立的条件是a>0,b>0,及当且仅当a=b时等号成立。在对不等式的证明过程中,体会到一些证明不等式常用的思路、方法。以后,同学们要注意数形结合的思想在解题中的灵活运用。

布置作业

活动与探究:已知a、b都是正数,试探索, ,,的大小关系,并证明你的结论。

分析:(方法一)由特殊到一般,用特殊值代入,先得到表达式的大小关系,再由不等式及实数的性质证明。

(方法二)创设几何直观情景。设AC=a,BC=b,用a、b表示线段CE、OE、CD、DF的长度,由CE>OE>CD>DF可得。

板书设计

基本不等式的证明

一、实际情景引入得到重要不等式

a2+b2≥2ab

二、定理

若a>0,b>0

课后作业:

证明过程探索:

基本不等式课件 篇2

关于基本不等式的主题范文:

基本不等式是数学中非常重要的一道课题,所以我们需要从以下几个方面来对基本不等式进行介绍。

一、基本不等式是什么

基本不等式是指数学中的一个重要定理,它表述的是任意正整数n及n个正数a1,a2,…,an的积与它们的和之间的关系。也就是说,对于任意正整数n和n个正数a1,a2,…,an,有以下不等式成立:

(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n

其中,等式成立当且仅当a1 = a2 = … = an。

二、基本不等式的证明

下面我们来看一下基本不等式的证明过程。

首先,如果我们令Ai = nai和G = (a1 × a2 × … × an)1/n,则我们可以将原不等式转化为:

(a1+a2+…+an)/n ≥ G

接下来,我们来看一下如果证明G ≤ (a1+a2+…+an)/n,那么我们就可以证明基本不等式,因为不等式具有对称性,即如果G ≤ (a1+a2+…+an)/n,则(a1+a2+…+an)/n ≥ G也成立。

接下来,我们证明G ≤ (a1+a2+…+an)/n,即:

(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n

将不等式右边两边平方,得到:

(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n

这时,我们来观察右边的式子,将式子中的每一项都乘以(n-1),得到:

(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n

继续进行简化,得到:

[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n

左边乘以1/n,右边除以(n-1),得到:

(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n

这样我们就完成了基本不等式的证明。

三、基本不等式在实际中的应用

基本不等式在实际中的应用非常广泛,下面我们来看一下其中的几个例子。

1. 求平均数

如果我们已知n个正数的积,需要求它们的平均数,那么根据基本不等式,我们可以得到:

(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n

等式两边都乘以n-1,得到:

a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n

这样我们就可以求得平均数:

(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n

2. 求数列中n个数的积的最大值

假设我们需要从数列{a1, a2, …, an}中选取n个数,求它们的积的最大值。根据基本不等式,我们有:

(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n

因为我们需要求积的最大值,所以当等式左边的和恰好等于n个数的积时,这个积才能取到最大值。因此,我们可以得到:

a1 = a2 = … = an

这样,我们就得到了求数列中n个数的积的最大值的方法。

三、结论

通过对基本不等式的介绍,我们可以发现它不仅仅是一道看似简单的数学题目,而是一个非常重要的定理,有着广泛的应用价值。希望大家能够在今后的学习中更加重视基本不等式,并能够深刻理解它的实际应用。

基本不等式课件 篇3

基本不等式是高中数学中的一个重要概念,具有广泛的应用价值。在本文中,我将从基本不等式的定义、证明、性质及应用四个方面进行阐述。

一、基本不等式的定义

基本不等式是描述两个实数乘积大小关系的不等式,它可以通过数学归纳法来证明。具体来说,对于任意的正整数n,有如下不等式成立:

$(1+\frac{1}{n})^n

其中,e表示自然对数的底数,即e≈2.71828。

二、基本不等式的证明

基本不等式的证明可以利用二项式定理来进行。具体来说,我们可以将(1+1/n)的n次方展开,得到:

$(1+\frac{1}{n})^n = \sum_{k=0}^n {\choose n}{k} \frac{1}{n^k}$

因为${\choose n}{k} = \frac{n!}{k!(n-k)!}$,所以有:

$(1+\frac{1}{n})^n =\frac{n!}{n^n} + \frac{n(n-1)}{2!n^2}+\cdots+\frac{1}{n^n}$

显然,对于k≥2的情况,都有$\frac{{\choose n}{k}}{n^n} \leq \frac{1}{n^2}$。因此,我们可以得到:

$(1+\frac{1}{n})^n

进一步化简得:

$(1+\frac{1}{n})^n

同理可得:

$(1+\frac{1}{n})^{n+1} > \frac{n+1}{n}$

将上述两个不等式带入到基本不等式中,得到:

$(1+\frac{1}{n})^n

证毕。

三、基本不等式的性质

基本不等式具有以下性质:

1. 基本不等式是一个单调递增的函数。

2. 基本不等式适用于所有的正实数。

4. 基本不等式可以推广到一般的n次方。

5. 基本不等式可以用来证明和推导其他数学定理。

四、基本不等式的应用

基本不等式在数学、物理、经济学等领域都有广泛的应用。以下列举几个具体例子:

1. 用基本不等式证明逼近贝塞尔函数的性质。

2. 在物理学中,基本不等式可用于证明波动方程的稳定性。

3. 在经济学中,基本不等式可用于证明市场力量的强度与稳定性。

综上所述,基本不等式是一个重要的数学概念,具有广泛的应用价值。掌握基本不等式的定义、证明、性质及应用,对于提高数学水平和学科交叉研究都有重要作用。

基本不等式课件 篇4

我今天说课的内容是浙教版数学八年级上册第五章第3节《一元一次不等式》的第2课时。下面我从教材分析、教学方法和教学过程等几方面来谈谈我对本节课的理解和设计。

一、教材分析

(一)教材的地位与作用

本节课是学生在学习了一元一次不等式及其解的概念,解简单的一元一次不等式的基础上,对解一元一次不等式的进一步深入和拓展;另一方面,又为学习不等式的应用、函数等知识奠定了基础。鉴于这种认识,我认为本节课不仅有着广泛的应用,而且起着承上启下的作用。

(二)教学目标

知识与能力目标:掌握解一元一次不等式的一般步骤;会运用解一元一次不等式的基本步骤解一元一次不等式。

过程与方法目标:通过学生的观察、独立思考等过程培养学生归纳概括的能力。

情感与态度目标:通过获得用数学知识解决实际问题的成功体验,增强学生学习的自信心。

(三)教学重点难点

基于教学目标,我认为本节课的重点是:运用解一元一次不等式的一般步骤解一元一次不等式。

由于例2的步骤较多,容易发生错误,是为本节课的难点。

二、教学方法

我认为在教学中,要善于调动学生的学习积极性,关注学生的学习过程。本节课我采用启发式,讲练结合的教学方法,让学生手脑并用,合作交流,自主探究。

三、教学过程

为了整体把握教材,构建高效课堂,我设计科一下流程:

复习引入—探究新知—巩固练习拓展新知—目标检测—归纳小结—作业布置,总共7个环节。

(一)复习引入

课件出示:解下列不等式:(1)3-3x>2-4x;(2)3+3x≤4x+8。这两道题是上节课学过的知识,我估计学生能够解决。于是我给学生一定时间让他们自行完成,同时请两位学生上台板演。对照学生的解题过程,教师提问:“解这样的不等式的基本步骤是什么?根据学生的回答,教师及时板书:移项、合并同类项、两边同除以未知数前面的系数。(注:遇负数,不等号的方向改变,与方程的不同之处)现在再看以下两道题:

1.合作学习,根据已学过的知识,你能解下列一元一次不等式吗?

(1)5x>3(x-2)+2(2)2m-3

2.解一元一次不等式与解一元一次方程的步骤类似。解一元一次不等式的一般步骤和根据如下:

步骤根据

1去分母不等式的基本性质3

2去括号单项式乘以多项式法则

3移项不等式的基本性质2

4合并同类项,得ax>b,或ax

5两边同除以a(或乘1/a)不等式的基本性质3

3.例1.解不等式3(1-x)>2(1-2x)

解:去括号,得3-3x>2-4x

移项,得-3x+4x>2-3

合并同类项,得x>-1

4.例2.解不等式(1+x)/2≤(1+2x)/3+1

解:去分母,得3(1+x)≤2(1+2x)+6

去括号,得3+3x≤2+4x+6

移项,得3x-4x≤2+6-3

合并同类项,得-x≤5

两边同除以-1.得x≥-5

注:1.五个步骤要求当堂背出,同桌之间可以互相核对。

2.要求作业严格按照上述步骤进行。

3、课内练习

解下列不等式,并把解在数轴上表示出来:

(1)5x-3

(2)3(1-3x)-2(4-2x)≤0

(3)(2x-1)/4-(1+x)/6≥1

4、小结:

1.解一元一次不等式的基本步骤。

2.不等式的解在数轴上的表示方法。

《一元一次不等式》的教学反思

本节内容是一元一次不等式组的基础。现对本节课从以下几方面进行反思:

一、课堂教学结构反思

本节课通过复习解一元一次不等式以及在数轴上表示解集开始引入新的问题,学生通过对新问题的讨论、交流与研究,明确了方法与注意事项,并为利用一元一次不等式解决实际问题作了铺垫。这样的程序符合学生的认知规律,教学取得了不错的效果。适时地由学生自己合作、交流,归纳出一般性的方法,对于学生从整体上把握知识以及养成总结的习惯是大有帮助的。

二、有效的课堂提问反思

复习旧知识的提问,可以加深对本课知识的理解,又能更好地巩固前面的内容,起到承上启下的作用。提问过程中可以达到师生间的相互交流。教学提问中,比如:不等式的基本性质是什么?不等式的概念是什么?不等式的解是什么?学生在理解解一元一次方程步骤的基础上,类比解一元一次不等式的步骤就有了进一步的认识。由于学生的基础比较差,课堂教学提问中,由易到难,深入浅出,尽可能让学生学会、会学、会做。

三、有效的课堂参与反思

本节课我从复习旧知识,提问,动手操作,合作交流、形成共识的基础上,过渡到一元一次不等式更一般的情况。在课堂活动中经历、感悟知识的生成、发展与变化过程,重在学生参与完成。通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己理清思路、板书过程,锻炼学生语言表达能力和书写能力,激发了学生学习积极性,培养学生的参与意识和合作意识,学生在各个环节中,运用所学的知识解决问题,进而达到知识的理解和掌握,使学生真正参与到知识形成发展过程中来。

本节课较好的方面:

1.本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;

2.课程内容前后呼应,前面练习能够为后面的例题作准备。

3.及时对学生学习的知识进行检查。

4.对过去遗留的问题,如:去括号时出现符号错误,去分母是漏乘,系数花1时分子与分母倒了等等问题,在课堂巡视时,发现问题并及时纠正,使学生在典型错误中吸取教训。

不足方面:课容量少,留给学生自己独立思考,讨论的时间较少。课堂上没有发挥学生的力量,开展“生帮生”的活动。在课堂上没有做到尝试着少说,给学生留些自由发展的空间。设计的教学环节,也没有多思考一些学生的所想所做,真正做好学生前进道路上的引导者。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。

基本不等式课件 篇5

各位评委老师,上午好,我选择的课题是必修5第三章第四节《基本不等式》第一课时。关于本课的设计,我将从以下五个方面向各位评委老师汇报。

一、教材分析

◆本节教材的地位和作用

◆教学目标

◆教学重点、难点

1、本节教材的地位和作用

"基本不等式" 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完"不等式的性质"、"不等式的解法"及"线性规划"的基础上对不等式的进一步研究。在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。

2、 教学目标

(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。

(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。

(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。

3、教学重点、难点

根据课程标准制定如下的教学重点、难点

重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。

难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。

二、教法说明

本节课借助几何画板,使用多媒体辅助进行直观演示。采用启发式教学法创设问题情景,激发学生开始尝试活动。运用生活中的实际例子,让学生享受解决实际问题的乐趣。 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。

三、学法指导

为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。

四、教学设计

◆运用2002年国际数学家大会会标引入

◆运用分析法证明基本不等式

◆不等式的几何解释

◆基本不等式的应用

1、运用2002年国际数学家大会会标引入

如图,这是在北京召开的第24届国际数学家大会会标。会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)

正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_

从图形中易得,s≥s’,即

问题1:它们有相等的情况吗?何时相等?

问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解)

一般地,对于任意实数a、b,我们有

当且仅当(重点强调)a=b时,等号成立(合情推理)

问题3:你能给出它的证明吗?(让学生独立证明)

设计意图

(1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。

(2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。

(3)三个思考题为学生创造情景,逐层深入,强化理解。

2、运用分析法证明基本不等式

如果 a>0,b>0 ,

用 和 分别代替a,b.可以得到

也可写成

(强调基本不等式成立的前提条件"正")(演绎推理)

问题4:你能用不等式的性质直接推导吗?

要证 ①

只要证 ②

要证② ,只要证 ③

要证③ ,只要证 ④

显然, ④是成立的。当且仅当a=b时, 不等式中的等号成立。

(强调基本不等式取等的条件"等")

设计意图

(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;

(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;

(3)此种证明方法是"分析法",在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。

3、不等式的几何解释

如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为

问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解)

设计意图

几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。

4、基本不等式的应用

例1.证明

(学生自己证明)

设计意图

(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习"分析法"证明不等式的过程;

(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式;

(3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。

例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小?

(2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?

(让学生分组合作、探究完成)

设计意图

(1)此题目利用基本不等式求最值,包含正用,逆用,体现了基本不等式的应用价值;

(2)强调利用不等式求最值的关键点:"正""定""等";

(3)有利于培养学生团结合作的精神。

练习 :(1)若a,b同号,则

(2)P113 练习1.2

设计意图

巩固基本不等式,让学生熟悉公式,并学会应用。

小结:(让学生畅所欲言)

设计意图

有利于发挥学生的主观能动性,突出学生的主体地位。

作业: 必做题:P 113 A组3、4

选做题:

设计意图

(1)必做题是让学生巩固所学知识,熟练公式应用,强化学生基础知识、基本技能的形成;

(2)选做题达到分层教学的目的,根据学生的实际情况,对他们进行素质教育。

时间安排:引入约5分钟

证明基本不等式约10分钟

几何意义约10分钟

知识应用约15分钟

小结约5分钟

五、板书设计

分析法证明

几何解释

例题讲解

小结

作业

例2

以上是我对这节课的教学设计,恳请各位评委老师指导,谢谢!

基本不等式课件 篇6

基本不等式是初中数学中的一个重要知识点,也是高中数学的基础。通过学习基本不等式,不仅可以帮助我们更加深入地理解不等式的性质,而且可以提高我们解决实际问题的能力。下面就让我们一起来探讨一下关于基本不等式的相关主题吧。

一、基本不等式的定义及应用

基本不等式是数学中常见的一种不等式形式,其具体定义为:对于正整数n和任意实数a1,a2,......,an,有下列不等式成立。

(a1+a2+......+an)/n ≥√(a1×a2×......×an)

基本不等式的应用非常广泛,涵盖了数学、物理、工程等多个领域。例如,在散装粉尘瓶装问题中,如果散装粉尘数量恒定,而瓶装数量不同,那么最节省费用的方案就是让每个瓶子装入等量的粉尘,即每个瓶子所用的费用最省。

基本不等式在数学中的应用也很广泛,例如,在证明一个三角形的角度之和等于180度的问题时,就可以使用基本不等式。

二、基本不等式的证明方法

基本不等式的证明方法有多种,下面就介绍其中较为常见的两种方法。

1. 通过平均数和平均数的平方差证明

将左右两边分别设为(a1+a2+......+an)/n和√(a1×a2×......×an),设它们的算数平均数为A,几何平均数为G,即

A=(a1+a2+......+an)/n

G=√(a1×a2×......×an)

那么,可以得出以下结论:

四倍平均数的平方比四倍几何平均数的平方不小于1,即

4A²≥4nG²

化简得(A-G)²≥0

而(A-G)²≥0 是显然成立的,因此基本不等式得证。

2. 通过对数和的差证明

对(a1+a2+......+an)/n 和√(a1×a2×......×an)取对数,得到

ln((a1+a2+......+an)/n)和

0.5ln(a1×a2×......×an)

令b1,b2,......,bn 为Ln(a1),ln(a2),......,ln(an)

则上式变为(b1+b2+......+bn)/n 和 0.5(b1+b2+......+bn)

那么,可以得出以下结论:

平方并减去平方和的差的一半,恒大于或等于0,即

n(e^b1+e^b2+......+e^bn)≥(e^b1×e^b2×......×e^bn)⁰·⁵

简化得:(a1+a2+......+an)/n ≥√(a1×a2×......×an)

因此,基本不等式得证。

三、基本不等式的推论

基本不等式在解决实际问题时非常有用,不仅可以帮助我们更好地理解不等式的性质,还可以推导出一些有用的结论。

1. 美国数学家霍尔德(K.O.Holder)在1889年提出了一个推论,称为Holder不等式,它的思想是:如果一个积分或求和中的各项乘方幂次之和相等,那么乘积的值最大时,每个变量的值相对都相等,即

a^p1×b^p2×......×z^pz ≤p1a1+p2b2+......+pnzn

其中p1,p2,......,pn均为正数。

2. 在证明柯西定理时,我们可以推导出柯西-施瓦茨不等式,即

(∑ai²)(∑bi²)≥(∑aibi)²

3. 可以证明,任何一个n次实系数多项式都可以表示为n个线性因式的积,其中每个线性因式都可以表示为两个实系数一次多项式(例如:x-a)的乘积。

以上就是关于基本不等式的相关主题的详细介绍,希望能够帮助大家更好地理解和掌握这一数学知识点。

基本不等式课件 篇7

【教学目标】

1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

2.过程与方法:通过实例探究抽象基本不等式;

3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;

【教学难点】

基本不等式 等号成立条件

【教学过程】

1.课题导入

基本不等式 的几何背景:

如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?

教师引导学生从面积的关系去找相等关系或不等关系

2.讲授新课

1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。

2.得到结论:一般的,如果

3.思考证明:你能给出它的证明吗?

证明:因为

所以, ,即

4.1)从几何图形的面积关系认识基本不等式

特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,

通常我们把上式写作:

2)从不等式的性质推导基本不等式

用分析法证明:

要证 (1)

只要证 a+b (2)

要证(2),只要证 a+b- 0 (3)

要证(3),只要证 ( - ) (4)

显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。

3)理解基本不等式 的几何意义

探究:课本第98页的“探究”

在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b。过点C作垂直于AB的弦DE,连接AD、BD。你能利用这个图形得出基本不等式 的几何解释吗?

易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB

即CD= .

这个圆的半径为 ,显然,它大于或等于CD,即 ,其中当且仅当点C与圆心重合,即a=b时,等号成立。

因此:基本不等式 几何意义是“半径不小于半弦”

评述:1.如果把 看作是正数a、b的等差中项, 看作是正数a、b的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项。

2.在数学中,我们称 为a、b的算术平均数,称 为a、b的几何平均数。本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数。

例1 已知x、y都是正数,求证:

(1) ≥2;

(2)(x+y)(x2+y2)(x3+y3)≥8x3y3.

分析:在运用定理: 时,注意条件a、b均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形。

解:∵x,y都是正数 ∴ >0, >0,x2>0,y2>0,x3>0,y3>0

(1) =2即 ≥2.

(2)x+y≥2 >0 x2+y2≥2 >0 x3+y3≥2 >0

∴(x+y)(x2+y2)(x3+y3)≥2 ·2 ·2 =8x3y3

即(x+y)(x2+y2)(x3+y3)≥8x3y3.

3.随堂练习

1.已知a、b、c都是正数,求证

(a+b)(b+c)(c+a)≥8abc

分析:对于此类题目,选择定理: (a>0,b>0)灵活变形,可求得结果。

解:∵a,b,c都是正数

∴a+b≥2 >0

b+c≥2 >0

c+a≥2 >0

基本不等式课件 篇8

[教学目标]

依据《新标准》对《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:

1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题(求最值、证明不等式);培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、不等式的证明)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

二、 [教学重点]

基本不等式 的证明过程及应用。

三、 [教学难点]

1、基本不等式成立时的三个限制条件(简称一正、二定、三相等)的正确理解;

2、灵活利用基本不等式求解实际问题中的最大值和最小值。

四、 [教学方法]

本节课采启发诱导、讲练结合的教学方法,结合现代信息技术多媒体课件、几何画板作为教学辅助手段,加深学生对基本不等式的理解。

[教学用具]

多媒体、几何画板

六、 [教学过程]

教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

具体过程安排如下:

(一)、创设情景,提出问题;

上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?

利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。

同时,(几何画板辅助教学)通过几何画板演示,

让学生更直观的抽象、归纳出结论:

(二)、抽象归纳:

一般地,对于任意实数 ,有 ,当且仅当 时,等号成立。

[问] 你能给出它的证明吗?

学生在黑板上板书。

特别地,当 时,在不等式 中,以 、 分别代替 ,得到什么?

答案: 。

【归纳总结】

如果 都是正数,那么 ,当且仅当 时,等号成立。

我们称此不等式为基本不等式。 其中 称为 的算术平均数, 称为 的几何平均数。

(三)、理解升华:

1、文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

2、符号语言叙述:

若 ,则有 ,当且仅当 时, 。

[问] 怎样理解“当且仅当”?

3、探究基本不等式证明方法:

[问] 如何证明基本不等式?

方法一:作差比较或由 展开证明。

方法二:分析法。

分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。

4、探究基本不等式的几何意义:

读书破万卷下笔如有神,以上就是一米范文范文为大家带来的3篇《2023高中数学基本不等式教学教案》,希望对您有一些参考价值。

基本不等式课件 篇9

教学目的

掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。

教学过程

师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

第一组:1+2=3; a+b=b+a; S =ab; 4+x =7。

第二组:-7 1+4; 2x ≤6, a+2 ≥0; 3≠4。

生:第一组都是等式,第二组都是不等式。

师:那么,什么叫做等式?什么叫做不等式?

生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?

生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。

师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

练习1 (回答)用小于号“”填空。

(1)7 ___ 4;

(2)- 2____6;

(3)- 3_____ -2;

(4)- 4_____-6

练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

7>4;-2<6;-3<-2;-4>-6。

师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:

性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。

(让同学回答。)

性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)

性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)

现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。

不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

师:对a和b有什么要求吗?对c有什么要求?

生:没有什么要求。

师:哪位同学来回答第二、三条性质?

生甲:如果a0, 那么acb,且c>0,那么ac>bc(或

生乙:如果abc(或 );如果a>b,且cb,且c>0,那么ac>bd;(2)如果a>b,那么ac2>bc2;(3)如果ac2>bc2,那么a>b;(4)如果a>b,那么a-b>0;(5)如果ax>b,且a≠0,那么xa;生甲:(1)不对,当c=d≤0时,ac>bd不成立。生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2>bc2不成立。生丙:(3)对,因为ac2>bc2成立,则c2一定大于零,根据不等式基本性质2,得a>b出。(4)对,根据不等式基本性质,由a>b,两边减去b得a-b>0。(5)不对,当a<0时,根据不等式基本性质3,得。(6)不对,因为当b<0时,根据不等式基本性质1,得a+b<a;而当b=0时,则有a+b=a。师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。课外做以下作业:略。教案说明(1) 不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。(2) 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。(3) 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

基本不等式课件 篇10

基本不等式是中学数学的重要概念之一,它在数学中有广泛的应用,是其他不等式的基础和重要工具。本篇文章将围绕基本不等式展开,探讨其相关概念,证明方法和实际应用。

一、基本不等式的概念

基本不等式是指一个数列的平均值大于等于它的几何平均值,即对于任意正整数$n$和正实数$x_1, x_2, ..., x_n$,有$\dfrac{x_1+x_2+...+x_n}{n} \geqslant \sqrt[n]{x_1x_2...x_n}$。

该不等式的意义在于,对于$n$个数的平均数,它越接近各个数的几何平均数,这些数的值的差距就越小。因此,基本不等式可以用来估计一组数据的分布情况和误差范围。

二、基本不等式的证明方法

基本不等式的证明方法有多种,其中比较流行的是数学归纳法和均值不等式法。下面将分别进行讲解。

1. 数学归纳法

(1) 当$n=2$时,我们有$\dfrac{x_1+x_2}{2} \geqslant \sqrt{x_1x_2}$,即$(x_1-x_2)^2 \geqslant 0$,显然成立。

(2) 假设当$n=k$时成立,即$\dfrac{x_1+x_2+...+x_k}{k} \geqslant \sqrt[k]{x_1x_2...x_k}$,现在我们来证明当$n=k+1$时也成立,即$\dfrac{x_1+x_2+...+x_k+x_{k+1}}{k+1} \geqslant \sqrt[k+1]{x_1x_2...x_kx_{k+1}}$。

将不等式两边同乘以$k+1$得到$k\dfrac{x_1+x_2+...+x_k}{k}+(x_{k+1}) \geqslant \sqrt[k+1]{x_1x_2...x_k} \cdot (k\dfrac{x_1+x_2+...+x_k}{k})^\dfrac{1}{k} \cdot x_{k+1}^\dfrac{1}{k+1}$。

根据均值不等式和归纳假设,有$k\dfrac{x_1+x_2+...+x_k}{k} \geqslant \sqrt[k]{x_1x_2...x_k} \geqslant x_{k+1}^\dfrac{1}{k}$,将其代入原式得到$k\dfrac{x_1+x_2+...+x_k}{k}+x_{k+1} \geqslant (k+1) \cdot \sqrt[k+1]{x_1x_2...x_kx_{k+1}}$。

由此证明当$n=k+1$成立。

2. 均值不等式法

通过均值不等式可得:

$\dfrac{x_1+x_2+...+x_n}{n} \geqslant \sqrt[n]{x_1x_2...x_n}$

$\dfrac{(x_1+x_2+...+x_n)(\dfrac{1}{x_1}+\dfrac{1}{x_2}+...+\dfrac{1}{x_n})}{n^2} \geqslant \dfrac{(n\dfrac{1}{\sqrt[n]{x_1x_2...x_n}})^2}{n^2}$

$x_1x_2...x_n(\dfrac{1}{x_1}+\dfrac{1}{x_2}+...+\dfrac{1}{x_n}) \geqslant n^2$

由此证明基本不等式成立。

三、基本不等式的实际应用

基本不等式在很多领域中都有广泛应用。

1. 经济学

基本不等式可以用于证明一个国家的经济发展水平,即该国的平均经济水平越高,其经济增长率越高。这对于财经政策的制定和实施具有重要意义。

2. 物理学

基本不等式也可以被应用到物理学中。例如,它可以描绘热力学中的热力学势函数和热力学系统间的温度规律。

3. 统计学

在统计学中,基本不等式可以用于证明一个样本数据集的方差越大,样本数据之间的差距就越大;反之亦然。

总的来说,基本不等式是数学中非常重要的一个概念。它不仅具有理论表述和证明,还能被应用在实际生活和自然界的各个领域中。相信在以后的学习生活中,基本不等式会成为越来越重要的知识点。

基本不等式课件 篇11

基本不等式是初中数学中重要的一章内容,也是高中数学和竞赛数学的基础。基本不等式的学习不仅有助于提高学生的数学素养和解题能力,同时也能帮助他们提高逻辑思维能力。本文旨在探讨“基本不等式”这一主题。

一、基本不等式的定义与性质

基本不等式是说:对于正实数x1,x2,…,xn,有

(x1+x2+…+xn)/n≥√(x1x2…xn),当且仅当x1=x2=…=xn时等号成立。

基本不等式的性质有以下几条:

(1)当n为偶数时,等号成立;

(2)当n为奇数时,当且仅当所有数相等时等号成立;

(3)两个数的平均数不小于它们的几何平均数,即(a+b)/2≥√(ab),其中a,b均为正实数且a≠b;

(4)当n≥3时,三个数的平均数不小于它们的几何平均数,即(a+b+c)/3≥√(abc),其中a,b,c均为正实数且a≠b≠c。

二、基本不等式的应用

基本不等式作为一种重要的数学工具,可以应用于众多问题之中。以下是基本不等式的一些常见应用。

1. 求和式的最小值

例题1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均为正数,并且x1+x2+x3+x4+x5≥5,则x1x2x3x4x5的最小值为多少?

解法:根据已知条件,设x1+x2+x3+x4+x5=5+m(其中m≥0),则有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:

(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5

移项得到x1x2x3x4x5≥1,则x1x2x3x4x5的最小值为1。

2. 比较函数大小

例题2:比较函数f(x)=√(a²+x²)+√(b²+(c-x)²)(a,b,c>0)在[0,c]上的最小和最大值。

解法:根据已知条件和基本不等式,将f(x)分解成两个正数的平均数不小于它们的几何平均数的形式,即

f(x)=[√(a²+x²)+√(b²+(c-x)²)]/2+1/2[√(a²+x²)+√(b²+(c-x)²)]

≥√[(√(a²+x²)×√(b²+(c-x)²)]+1/2(2c)

=√(a²+b²+c²+ab-ac-bc)+c

当x=c/3时等号成立,即f(x)的最小值为√(a²+b²+c²+ab-ac-bc)+c,最大值为√(a²+b²+c²+ab+ac+bc)+c。

3. 求极限

例题3:已知数列{a_n}(n≥1)的通项公式为a_n=(√n+1)/(n+1),则求∑(n从1到∞)a_n的极限。

解法:根据基本不等式,有

a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n

代入已知条件,可得:

a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)

= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)

极限为1/2。

4. 求证不等式

例题4:已知a,b,c为正实数,且a+b+c=1,证明∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)。

解法:将不等式化简,得:

∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)

⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a²+b²+c²)/(ab+bc+ca)

⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)²-(ab+bc+ca)]/(ab+bc+ca)

由于a+b+c=1,有

(ab+bc+ca)≤a²+b²+c²,

(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)²/(a(1-a)+b(1-b)+c(1-c))≥3(a²+b²+c²)/(ab+bc+ca)

其中第一个不等式成立是因为当a=b=c=1/3时,等号成立;第二个不等式用到了基本不等式的形式。

综上所述,基本不等式是数学中的重要概念,掌握了基本不等式的定义、性质和应用方法,将有助于提高人们的数学素养和解题能力。在日常生活和学习中,要重视基本不等式的学习和应用,逐步提高自己的数学水平。

基本不等式课件 篇12

基本不等式作为高中数学必修内容之一,在学生学习中扮演着极为重要的角色。本篇文章将围绕基本不等式,探讨它的概念、性质、证明方法及应用,并展示基本不等式的魅力和实用性。

一、基本不等式的概念

基本不等式是指对于任意正实数 $a_1,a_2,\cdots,a_n$ 和任意正整数 $n$,有以下不等式成立:

$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

这个不等式也被称为均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示这些数的算术平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示这些数的几何平均值。均值不等式的意义在于,算术平均数大于等于几何平均数。

二、基本不等式的性质

基本不等式有以下几个性质:

1. 当且仅当 $a_1=a_2=\cdots=a_n$ 时等号成立。

2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一个数为 $0$,则 $\sqrt[n]{a_1a_2\cdots a_n}=0$,这时等号成立。

3. 基本不等式可以扩展到实数范围内。

4. 均值不等式不等式对于大于 $0$ 的实数都成立。

三、基本不等式的证明方法

基本不等式有多种证明方法,下面列举其中两种:

方法一:数学归纳法

假设基本不等式对于 $n=k$ 时成立,即对于 $k$ 个正实数 $a_1,a_2,\cdots,a_k$,有以下不等式成立:

$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$

现证明它对于 $n=k+1$ 时也成立。将 $a_{k+1}$ 插入到原来的不等式中,得到:

$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$

由于:

$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$

因此,我们只需证明以下不等式:

$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$

经过变形化简,可以得到:

$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$

显然,这是成立的。

因此,按照归纳法的证明方式,基本不等式对于所有的正整数 $n$ 都成立。

方法二:对数函数的应用

对于 $a_1,a_2,\cdots,a_n$,我们可以定义函数:

$f(x)=\ln{x}$

显然,函数 $f(x)$ 是连续的、单调递增的。根据式子:

$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

可以得到:

$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$

即:

$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$

对于左边的式子,有:

$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$

对于右边的式子,有:

$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$

因此,我们可以得到:

$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$

即:

$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$

这正是均值不等式的形式。因此,基本不等式得证。

四、基本不等式的应用

基本不等式在数学和物理学中有广泛的应用。下面介绍几个常见的应用场景:

1. 最小值求解

如果有 $n$ 个正实数 $a_1,a_2,\cdots,a_n$,它们的和为 $k$,求它们的积的最大值,即:

$\max(a_1a_2\cdots a_n)$

根据基本不等式,有:

$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

因此,可以得到:

$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

两边同时取幂,可以得到:

$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$

即:

$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$

2. 凸函数的优化问题

如果 $f(x)$ 是一个凸函数,$a_1,a_2,\cdots,a_n$ 是正实数,$b_1,b_2,\cdots,b_n$ 是任意实数且 $\sum_{i=1}^n b_i=1$,则有:

$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$

这是凸函数的优化问题中常用的基本不等式形式。它可以通过Jensen不等式或基本不等式证明。

3. 三角形求证

如果我们可以用 $a,b,c$ 表示一个三角形的三边长,则有:

$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$

这个不等式在三角形求证中也被广泛应用。

五、结语

基本不等式是高中数学必修内容之一,但其实它的应用范围远不止于此。在实际问题中,基本不等式常常能给我们提供有效的解决方案。通过本文的介绍,希望读者能够更加深入地理解基本不等式的概念、性质、证明方法及应用,并能在实际问题中灵活运用。

$,则 $\sqrt[n]{a_1a_2\cdots a_n}=0$,这时等号成立。

3. 基本不等式可以扩展到实数范围内。

4. 均值不等式不等式对于大于 id="article-content1">

基本不等式课件推荐。

老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“基本不等式课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

基本不等式课件 篇1

在前两节课的研究当中,学生已掌握了一些简单的不等式及其应用,并能用不等式及不等式组抽象出实际问题中的不等量关系,掌握了不等式的一些简单性质与证明,研究了一元二次不等式及其解法,学习了二元一次不等式(组)与简单的线性规划问题。本节课的研究是前三大节学习的延续和拓展。另外,为基本不等式的应用垫定了坚实的基础,所以说,本节课是起到了承上启下的作用。本节课是通过让学生观察第24届国际数学家大会的会标图案中隐含的相等关系与不等关系而引入的通过分析得出基本不等式,然后从三种角度对基本不等式展开证明及对基本不等式展开一些简单的应用,进而更深一层次地从理性角度建立不等观念。教师应作好点拨,利用几何背景,数形结合做好归纳总结、逻辑分析,并鼓励学生从理性角度去分析探索过程,进而更深层次理解基本不等式,鼓励学生对数学知识和方法获得过程的探索,同时也能激发学生的学习兴趣,根据本节课的教学内容,应用观察、类比、归纳、逻辑分析、思考、合作交流、探究,得出基本不等式,进行启发、探究式教学并使用投影仪辅助。

教学重点

1、创设代数与几何背景,用数形结合的思想理解基本不等式;

2、从不同角度探索基本不等式的证明过程;

3、从基本不等式的证明过程进一步体会不等式证明的常用思路。

教学难点

1、对基本不等式从不同角度的探索证明;

2、通过基本不等式的证明过程体会分析法的证明思路。

教具准备 多媒体及课件

三维目标

一、知识与技能

1、创设用代数与几何两方面背景,用数形结合的思想理解基本不等式;

2、尝试让学生从不同角度探索基本不等式的证明过程;

3、从基本不等式的证明过程进一步体会不等式证明的常用思路,即由条件到结论,或由结论到条件。

二、过程与方法

1、采用探究法,按照联想、思考、合作交流、逻辑分析、抽象应用的方法进行启发式教学;

2、教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;

3、将探索过程设计为较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。

三、情感态度与价值观

1、通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行归纳、抽象,使学生感受数学、走进数学,培养学生严谨的数学学习习惯和良好的思维习惯;

2、学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;

3、通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣。

教学过程

导入新课

探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗?

(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)

推进新课

师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找?

(沉静片刻)

生 应该先从此图案中抽象出几何图形。

师 此图案中隐含什么样的几何图形呢?哪位同学能在黑板上画出这个几何图形?

(请两位同学在黑板上画。教师根据两位同学的板演作点评)

(其中四个直角三角形没有画全等,不形象、直观。此时教师用投影片给出隐含的规范的几何图形)

师 同学们观察得很细致,抽象出的几何图形比较准确。这说明,我们只要在现有的基础上进一步刻苦努力,发奋图强,也能作出和数学家赵爽一样的成绩。

(此时,每一位同学看上去都精神饱满,信心百倍,全神贯注地投入到本节课的学习中来)

[过程引导]

师 设直角三角形的两直角边的长分别为a、b,那么,四个直角三角形的面积之和与正方形的面积有什么关系呢?

生 显然正方形的面积大于四个直角三角形的面积之和。

师 一定吗?

(大家齐声:不一定,有可能相等)

师 同学们能否用数学符号去进行严格的推理证明,从而说明我们刚才直觉思维的合理性?

生 每个直角三角形的面积为,四个直角三角形的面积之和为2ab。正方形的边长为,所以正方形的面积为a2+b2,则a2+b2≥2ab。

师 这位同学回答得很好,表达很全面、准确,但请大家思考一下,他对a2+b2≥2ab证明了吗?

生 没有,他仍是由我们刚才的直观所得,只是用字母表达一下而已。

师 回答得很好。

(有的同学感到迷惑不解)

师 这样的叙述不能代替证明。这是同学们在解题时经常会犯的错误。实质上,对文字性语言叙述证明题来说,他只是写出了已知、求证,并未给出证明。

(有的同学窃窃私语,确实是这样,并没有给出证明)

师 请同学们继续思考,该如何证明此不等式,即a2+b2≥2ab。

生 采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一个完全平方数,它是非负数,即(a-b)2≥0,所以可得a2+b2≥2ab。

师 同学们思考一下,这位同学的证明是否正确?

生 正确。

[教师精讲]

师 这位同学的证明思路很好。今后,我们把这种证明不等式的思想方法形象地称之为“比较法”,它和根据实数的基本性质比较两个代数式的大小是否一样。

生 实质一样,只是设问的形式不同而已。一个是比较大小,一个是让我们去证明。

师 这位同学回答得很好,思维很深刻。此处的比较法是用差和0作比较。在我们的数学研究当中,还有另一种“比较法”。

(教师此处的设问是针对学生已有的知识结构而言)

生 作商,用商和“1”比较大小。

师 对。那么我们在遇到这类问题时,何时采用作差,何时采用作商呢?这个问题让同学们课后去思考,在解决问题中自然会遇到。

(此处设置疑问,意在激发学生课后去自主探究问题,把探究的思维空间切实留给学生)

[合作探究]

师 请同学们再仔细观察一下,等号何时取到。

生 当四个直角三角形的直角顶点重合时,即面积相等时取等号。

(学生的思维仍建立在感性思维基础之上,教师应及时点拨)

师 从不等式a2+b2≥2ab的证明过程能否去说明。

生 当且仅当(a-b)2=0,即a=b时,取等号。

师 这位同学回答得很好。请同学们看一下,刚才两位同学分别从几何图形与不等式两个角度分析等号成立的条件是否一致。

(大家齐声)一致。

(此处意在强化学生的直觉思维与理性思维要合并使用。就此问题来讲,意在强化学生数形结合思想方法的应用)

板书:

一般地,对于任意实数a、b,我们有a2+b2≥2ab,当且仅当a=b时,等号成立。

[过程引导]

师 这是一个很重要的不等式。对数学中重要的结论,我们应仔细观察、思考,才能挖掘出它的内涵与外延。只有这样,我们用它来解决问题时才能得心应手,也不会出错。

(同学们的思维再一次高度集中,似乎能从不等式a2+b2≥2ab中得出什么。此时,教师应及时点拨、指引)

师 当a>0,b>0时,请同学们思考一下,是否可以用a、b代替此不等式中的a、b。

生 完全可以。

师 为什么?

生 因为不等式中的a、b∈R。

师 很好,我们来看一下代替后的结果。

板书:

即 (a>0,b>0)。

师 这个不等式就是我们这节课要推导的基本不等式。它很重要,在数学的研究中有很多应用,我们常把叫做正数a、b的算术平均数,把ab叫做正数a、b的几何平均数,即两个正数的算术平均数不小于它们的几何平均数。

(此处意在引起学生的重视,从不同的角度去理解)

师 请同学们尝试一下,能否利用不等式及实数的基本性质来推导出这个不等式呢?

(此时,同学们信心十足,都说能。教师利用投影片展示推导过程的填空形式)

要证:,①

只要证a+b≥2,②

要证②,只要证:a+b-2≥0,③

要证③,只要证:④

显然④是成立的,当且仅当a=b时,④中的等号成立,这样就又一次得到了基本不等式。

(此处以填空的形式,突出体现了分析法证明的关键步骤,意在把思维的时空切实留给学生,让学生在探究的基础上去体会分析法的证明思路,加大了证明基本不等式的探究力度)

[合作探究]

老师用投影仪给出下列问题。

如图,AB是圆的直径,点C是AB上一点,AC=a,BC=b。过点C作垂直于AB的弦DD′,连结AD、BD。你能利用这个图形得出基本不等式的几何解释吗?

(本节课开展到这里,学生从基本不等式的证明过程中已体会到证明不等式的常用方法,对基本不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础)

[合作探究]

师 同学们能找出图中与a、b有关的线段吗?

生 可证△ACD ∽△BCD,所以可得。

生 由射影定理也可得。

师 这两位同学回答得都很好,那ab与分别又有什么几何意义呢?

生表示半弦长,表示半径长。

师 半径和半弦又有什么关系呢?

生 由半径大于半弦可得。

师 这位同学回答得是否很严密?

生 当且仅当点C与圆心重合,即当a=b时可取等号,所以也可得出基本不等式 (a>0,b>0)。

课堂小结

师 本节课我们研究了哪些问题?有什么收获?

生 我们通过观察分析第24届国际数学家大会的会标得出了不等式a2+b2≥2ab。

生 由a2+b2≥2ab,当a>0,b>0时,以、分别代替a、b,得到了基本不等式 (a>0,b>0)。进而用不等式的性质,由结论到条件,证明了基本不等式。

生 在圆这个几何图形中我们也能得到基本不等式。

(此处,创造让学生进行课堂小结的机会,目的是培养学生语言表达能力,也有利于课外学生归纳、总结等学习方法、能力的提高)

师 大家刚才总结得都很好,本节课我们从实际情景中抽象出基本不等式。并采用数形结合的思想,赋予基本不等式几何直观,让大家进一步领悟到基本不等式成立的条件是a>0,b>0,及当且仅当a=b时等号成立。在对不等式的证明过程中,体会到一些证明不等式常用的思路、方法。以后,同学们要注意数形结合的思想在解题中的灵活运用。

布置作业

活动与探究:已知a、b都是正数,试探索, ,,的大小关系,并证明你的结论。

分析:(方法一)由特殊到一般,用特殊值代入,先得到表达式的大小关系,再由不等式及实数的性质证明。

(方法二)创设几何直观情景。设AC=a,BC=b,用a、b表示线段CE、OE、CD、DF的长度,由CE>OE>CD>DF可得。

板书设计

基本不等式的证明

一、实际情景引入得到重要不等式

a2+b2≥2ab

二、定理

若a>0,b>0

课后作业:

证明过程探索:

基本不等式课件 篇2

关于基本不等式的主题范文:

基本不等式是数学中非常重要的一道课题,所以我们需要从以下几个方面来对基本不等式进行介绍。

一、基本不等式是什么

基本不等式是指数学中的一个重要定理,它表述的是任意正整数n及n个正数a1,a2,…,an的积与它们的和之间的关系。也就是说,对于任意正整数n和n个正数a1,a2,…,an,有以下不等式成立:

(a1+a2+…+an)/n ≥ (a1×a2×…×an)1/n

其中,等式成立当且仅当a1 = a2 = … = an。

二、基本不等式的证明

下面我们来看一下基本不等式的证明过程。

首先,如果我们令Ai = nai和G = (a1 × a2 × … × an)1/n,则我们可以将原不等式转化为:

(a1+a2+…+an)/n ≥ G

接下来,我们来看一下如果证明G ≤ (a1+a2+…+an)/n,那么我们就可以证明基本不等式,因为不等式具有对称性,即如果G ≤ (a1+a2+…+an)/n,则(a1+a2+…+an)/n ≥ G也成立。

接下来,我们证明G ≤ (a1+a2+…+an)/n,即:

(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)1/n

将不等式右边两边平方,得到:

(a1+a2+…+an)/n ≥ (a1 × a2 × … × an)2/n

这时,我们来观察右边的式子,将式子中的每一项都乘以(n-1),得到:

(a1 × (n-1) + a2 × (n-1) + … + an × (n-1)) / n ≥ (a1 × a2 × … × an)2/n

继续进行简化,得到:

[(a1 × (n-1)) + (a2 × (n-1)) + … + (an × (n-1))] / n ≥ (n-1) × a1 × a2 × … × an / n

左边乘以1/n,右边除以(n-1),得到:

(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n

这样我们就完成了基本不等式的证明。

三、基本不等式在实际中的应用

基本不等式在实际中的应用非常广泛,下面我们来看一下其中的几个例子。

1. 求平均数

如果我们已知n个正数的积,需要求它们的平均数,那么根据基本不等式,我们可以得到:

(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n

等式两边都乘以n-1,得到:

a1 + a2 + … + an ≥ (n-1) × (a1 × a2 × … × an)1/n

这样我们就可以求得平均数:

(a1 + a2 + … + an) / n ≥ (n-1) × (a1 × a2 × … × an)1/n / n

2. 求数列中n个数的积的最大值

假设我们需要从数列{a1, a2, …, an}中选取n个数,求它们的积的最大值。根据基本不等式,我们有:

(a1 + a2 + … + an) / n ≥ (a1 × a2 × … × an)1/n

因为我们需要求积的最大值,所以当等式左边的和恰好等于n个数的积时,这个积才能取到最大值。因此,我们可以得到:

a1 = a2 = … = an

这样,我们就得到了求数列中n个数的积的最大值的方法。

三、结论

通过对基本不等式的介绍,我们可以发现它不仅仅是一道看似简单的数学题目,而是一个非常重要的定理,有着广泛的应用价值。希望大家能够在今后的学习中更加重视基本不等式,并能够深刻理解它的实际应用。

基本不等式课件 篇3

基本不等式是高中数学中的一个重要概念,具有广泛的应用价值。在本文中,我将从基本不等式的定义、证明、性质及应用四个方面进行阐述。

一、基本不等式的定义

基本不等式是描述两个实数乘积大小关系的不等式,它可以通过数学归纳法来证明。具体来说,对于任意的正整数n,有如下不等式成立:

$(1+\frac{1}{n})^n

其中,e表示自然对数的底数,即e≈2.71828。

二、基本不等式的证明

基本不等式的证明可以利用二项式定理来进行。具体来说,我们可以将(1+1/n)的n次方展开,得到:

$(1+\frac{1}{n})^n = \sum_{k=0}^n {\choose n}{k} \frac{1}{n^k}$

因为${\choose n}{k} = \frac{n!}{k!(n-k)!}$,所以有:

$(1+\frac{1}{n})^n =\frac{n!}{n^n} + \frac{n(n-1)}{2!n^2}+\cdots+\frac{1}{n^n}$

显然,对于k≥2的情况,都有$\frac{{\choose n}{k}}{n^n} \leq \frac{1}{n^2}$。因此,我们可以得到:

$(1+\frac{1}{n})^n

进一步化简得:

$(1+\frac{1}{n})^n

同理可得:

$(1+\frac{1}{n})^{n+1} > \frac{n+1}{n}$

将上述两个不等式带入到基本不等式中,得到:

$(1+\frac{1}{n})^n

证毕。

三、基本不等式的性质

基本不等式具有以下性质:

1. 基本不等式是一个单调递增的函数。

2. 基本不等式适用于所有的正实数。

4. 基本不等式可以推广到一般的n次方。

5. 基本不等式可以用来证明和推导其他数学定理。

四、基本不等式的应用

基本不等式在数学、物理、经济学等领域都有广泛的应用。以下列举几个具体例子:

1. 用基本不等式证明逼近贝塞尔函数的性质。

2. 在物理学中,基本不等式可用于证明波动方程的稳定性。

3. 在经济学中,基本不等式可用于证明市场力量的强度与稳定性。

综上所述,基本不等式是一个重要的数学概念,具有广泛的应用价值。掌握基本不等式的定义、证明、性质及应用,对于提高数学水平和学科交叉研究都有重要作用。

基本不等式课件 篇4

我今天说课的内容是浙教版数学八年级上册第五章第3节《一元一次不等式》的第2课时。下面我从教材分析、教学方法和教学过程等几方面来谈谈我对本节课的理解和设计。

一、教材分析

(一)教材的地位与作用

本节课是学生在学习了一元一次不等式及其解的概念,解简单的一元一次不等式的基础上,对解一元一次不等式的进一步深入和拓展;另一方面,又为学习不等式的应用、函数等知识奠定了基础。鉴于这种认识,我认为本节课不仅有着广泛的应用,而且起着承上启下的作用。

(二)教学目标

知识与能力目标:掌握解一元一次不等式的一般步骤;会运用解一元一次不等式的基本步骤解一元一次不等式。

过程与方法目标:通过学生的观察、独立思考等过程培养学生归纳概括的能力。

情感与态度目标:通过获得用数学知识解决实际问题的成功体验,增强学生学习的自信心。

(三)教学重点难点

基于教学目标,我认为本节课的重点是:运用解一元一次不等式的一般步骤解一元一次不等式。

由于例2的步骤较多,容易发生错误,是为本节课的难点。

二、教学方法

我认为在教学中,要善于调动学生的学习积极性,关注学生的学习过程。本节课我采用启发式,讲练结合的教学方法,让学生手脑并用,合作交流,自主探究。

三、教学过程

为了整体把握教材,构建高效课堂,我设计科一下流程:

复习引入—探究新知—巩固练习拓展新知—目标检测—归纳小结—作业布置,总共7个环节。

(一)复习引入

课件出示:解下列不等式:(1)3-3x>2-4x;(2)3+3x≤4x+8。这两道题是上节课学过的知识,我估计学生能够解决。于是我给学生一定时间让他们自行完成,同时请两位学生上台板演。对照学生的解题过程,教师提问:“解这样的不等式的基本步骤是什么?根据学生的回答,教师及时板书:移项、合并同类项、两边同除以未知数前面的系数。(注:遇负数,不等号的方向改变,与方程的不同之处)现在再看以下两道题:

1.合作学习,根据已学过的知识,你能解下列一元一次不等式吗?

(1)5x>3(x-2)+2(2)2m-3

2.解一元一次不等式与解一元一次方程的步骤类似。解一元一次不等式的一般步骤和根据如下:

步骤根据

1去分母不等式的基本性质3

2去括号单项式乘以多项式法则

3移项不等式的基本性质2

4合并同类项,得ax>b,或ax

5两边同除以a(或乘1/a)不等式的基本性质3

3.例1.解不等式3(1-x)>2(1-2x)

解:去括号,得3-3x>2-4x

移项,得-3x+4x>2-3

合并同类项,得x>-1

4.例2.解不等式(1+x)/2≤(1+2x)/3+1

解:去分母,得3(1+x)≤2(1+2x)+6

去括号,得3+3x≤2+4x+6

移项,得3x-4x≤2+6-3

合并同类项,得-x≤5

两边同除以-1.得x≥-5

注:1.五个步骤要求当堂背出,同桌之间可以互相核对。

2.要求作业严格按照上述步骤进行。

3、课内练习

解下列不等式,并把解在数轴上表示出来:

(1)5x-3

(2)3(1-3x)-2(4-2x)≤0

(3)(2x-1)/4-(1+x)/6≥1

4、小结:

1.解一元一次不等式的基本步骤。

2.不等式的解在数轴上的表示方法。

《一元一次不等式》的教学反思

本节内容是一元一次不等式组的基础。现对本节课从以下几方面进行反思:

一、课堂教学结构反思

本节课通过复习解一元一次不等式以及在数轴上表示解集开始引入新的问题,学生通过对新问题的讨论、交流与研究,明确了方法与注意事项,并为利用一元一次不等式解决实际问题作了铺垫。这样的程序符合学生的认知规律,教学取得了不错的效果。适时地由学生自己合作、交流,归纳出一般性的方法,对于学生从整体上把握知识以及养成总结的习惯是大有帮助的。

二、有效的课堂提问反思

复习旧知识的提问,可以加深对本课知识的理解,又能更好地巩固前面的内容,起到承上启下的作用。提问过程中可以达到师生间的相互交流。教学提问中,比如:不等式的基本性质是什么?不等式的概念是什么?不等式的解是什么?学生在理解解一元一次方程步骤的基础上,类比解一元一次不等式的步骤就有了进一步的认识。由于学生的基础比较差,课堂教学提问中,由易到难,深入浅出,尽可能让学生学会、会学、会做。

三、有效的课堂参与反思

本节课我从复习旧知识,提问,动手操作,合作交流、形成共识的基础上,过渡到一元一次不等式更一般的情况。在课堂活动中经历、感悟知识的生成、发展与变化过程,重在学生参与完成。通过精心设计问题、课堂讨论,中间贯穿鼓励性语言,并让学生自己理清思路、板书过程,锻炼学生语言表达能力和书写能力,激发了学生学习积极性,培养学生的参与意识和合作意识,学生在各个环节中,运用所学的知识解决问题,进而达到知识的理解和掌握,使学生真正参与到知识形成发展过程中来。

本节课较好的方面:

1.本节课能结合学生的实际情况明确学习目标,注意分层教学的开展;

2.课程内容前后呼应,前面练习能够为后面的例题作准备。

3.及时对学生学习的知识进行检查。

4.对过去遗留的问题,如:去括号时出现符号错误,去分母是漏乘,系数花1时分子与分母倒了等等问题,在课堂巡视时,发现问题并及时纠正,使学生在典型错误中吸取教训。

不足方面:课容量少,留给学生自己独立思考,讨论的时间较少。课堂上没有发挥学生的力量,开展“生帮生”的活动。在课堂上没有做到尝试着少说,给学生留些自由发展的空间。设计的教学环节,也没有多思考一些学生的所想所做,真正做好学生前进道路上的引导者。本课在现场操作与反馈中,与教学设想仍有一定的差距,许多地方还停留在表面形态,师生都还未能很习惯地进入角色。

基本不等式课件 篇5

各位评委老师,上午好,我选择的课题是必修5第三章第四节《基本不等式》第一课时。关于本课的设计,我将从以下五个方面向各位评委老师汇报。

一、教材分析

◆本节教材的地位和作用

◆教学目标

◆教学重点、难点

1、本节教材的地位和作用

"基本不等式" 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完"不等式的性质"、"不等式的解法"及"线性规划"的基础上对不等式的进一步研究。在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。

2、 教学目标

(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。

(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。

(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。

3、教学重点、难点

根据课程标准制定如下的教学重点、难点

重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。

难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。

二、教法说明

本节课借助几何画板,使用多媒体辅助进行直观演示。采用启发式教学法创设问题情景,激发学生开始尝试活动。运用生活中的实际例子,让学生享受解决实际问题的乐趣。 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。

三、学法指导

为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。

四、教学设计

◆运用2002年国际数学家大会会标引入

◆运用分析法证明基本不等式

◆不等式的几何解释

◆基本不等式的应用

1、运用2002年国际数学家大会会标引入

如图,这是在北京召开的第24届国际数学家大会会标。会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)

正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_

从图形中易得,s≥s’,即

问题1:它们有相等的情况吗?何时相等?

问题2:当 a,b为任意实数时,上式还成立吗?(学生积极思考,通过几何画板帮助学生理解)

一般地,对于任意实数a、b,我们有

当且仅当(重点强调)a=b时,等号成立(合情推理)

问题3:你能给出它的证明吗?(让学生独立证明)

设计意图

(1)运用2002年国际数学家大会会标引入,能让学生进一步体会中国数学的历史悠久,感受数学与生活的联系。

(2)运用此图标能较容易的观察出面积之间的关系,引入基本不等式很直观。

(3)三个思考题为学生创造情景,逐层深入,强化理解。

2、运用分析法证明基本不等式

如果 a>0,b>0 ,

用 和 分别代替a,b.可以得到

也可写成

(强调基本不等式成立的前提条件"正")(演绎推理)

问题4:你能用不等式的性质直接推导吗?

要证 ①

只要证 ②

要证② ,只要证 ③

要证③ ,只要证 ④

显然, ④是成立的。当且仅当a=b时, 不等式中的等号成立。

(强调基本不等式取等的条件"等")

设计意图

(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;

(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;

(3)此种证明方法是"分析法",在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。

3、不等式的几何解释

如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为

问题5: 你能用这个图得出基本不等式的几何解释吗? (学生积极思考,通过几何画板帮助学生理解)

设计意图

几何直观能启迪思路,帮助理解,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。

4、基本不等式的应用

例1.证明

(学生自己证明)

设计意图

(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习"分析法"证明不等式的过程;

(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式;

(3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。

例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小?

(2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?

(让学生分组合作、探究完成)

设计意图

(1)此题目利用基本不等式求最值,包含正用,逆用,体现了基本不等式的应用价值;

(2)强调利用不等式求最值的关键点:"正""定""等";

(3)有利于培养学生团结合作的精神。

练习 :(1)若a,b同号,则

(2)P113 练习1.2

设计意图

巩固基本不等式,让学生熟悉公式,并学会应用。

小结:(让学生畅所欲言)

设计意图

有利于发挥学生的主观能动性,突出学生的主体地位。

作业: 必做题:P 113 A组3、4

选做题:

设计意图

(1)必做题是让学生巩固所学知识,熟练公式应用,强化学生基础知识、基本技能的形成;

(2)选做题达到分层教学的目的,根据学生的实际情况,对他们进行素质教育。

时间安排:引入约5分钟

证明基本不等式约10分钟

几何意义约10分钟

知识应用约15分钟

小结约5分钟

五、板书设计

分析法证明

几何解释

例题讲解

小结

作业

例2

以上是我对这节课的教学设计,恳请各位评委老师指导,谢谢!

基本不等式课件 篇6

基本不等式是初中数学中的一个重要知识点,也是高中数学的基础。通过学习基本不等式,不仅可以帮助我们更加深入地理解不等式的性质,而且可以提高我们解决实际问题的能力。下面就让我们一起来探讨一下关于基本不等式的相关主题吧。

一、基本不等式的定义及应用

基本不等式是数学中常见的一种不等式形式,其具体定义为:对于正整数n和任意实数a1,a2,......,an,有下列不等式成立。

(a1+a2+......+an)/n ≥√(a1×a2×......×an)

基本不等式的应用非常广泛,涵盖了数学、物理、工程等多个领域。例如,在散装粉尘瓶装问题中,如果散装粉尘数量恒定,而瓶装数量不同,那么最节省费用的方案就是让每个瓶子装入等量的粉尘,即每个瓶子所用的费用最省。

基本不等式在数学中的应用也很广泛,例如,在证明一个三角形的角度之和等于180度的问题时,就可以使用基本不等式。

二、基本不等式的证明方法

基本不等式的证明方法有多种,下面就介绍其中较为常见的两种方法。

1. 通过平均数和平均数的平方差证明

将左右两边分别设为(a1+a2+......+an)/n和√(a1×a2×......×an),设它们的算数平均数为A,几何平均数为G,即

A=(a1+a2+......+an)/n

G=√(a1×a2×......×an)

那么,可以得出以下结论:

四倍平均数的平方比四倍几何平均数的平方不小于1,即

4A²≥4nG²

化简得(A-G)²≥0

而(A-G)²≥0 是显然成立的,因此基本不等式得证。

2. 通过对数和的差证明

对(a1+a2+......+an)/n 和√(a1×a2×......×an)取对数,得到

ln((a1+a2+......+an)/n)和

0.5ln(a1×a2×......×an)

令b1,b2,......,bn 为Ln(a1),ln(a2),......,ln(an)

则上式变为(b1+b2+......+bn)/n 和 0.5(b1+b2+......+bn)

那么,可以得出以下结论:

平方并减去平方和的差的一半,恒大于或等于0,即

n(e^b1+e^b2+......+e^bn)≥(e^b1×e^b2×......×e^bn)⁰·⁵

简化得:(a1+a2+......+an)/n ≥√(a1×a2×......×an)

因此,基本不等式得证。

三、基本不等式的推论

基本不等式在解决实际问题时非常有用,不仅可以帮助我们更好地理解不等式的性质,还可以推导出一些有用的结论。

1. 美国数学家霍尔德(K.O.Holder)在1889年提出了一个推论,称为Holder不等式,它的思想是:如果一个积分或求和中的各项乘方幂次之和相等,那么乘积的值最大时,每个变量的值相对都相等,即

a^p1×b^p2×......×z^pz ≤p1a1+p2b2+......+pnzn

其中p1,p2,......,pn均为正数。

2. 在证明柯西定理时,我们可以推导出柯西-施瓦茨不等式,即

(∑ai²)(∑bi²)≥(∑aibi)²

3. 可以证明,任何一个n次实系数多项式都可以表示为n个线性因式的积,其中每个线性因式都可以表示为两个实系数一次多项式(例如:x-a)的乘积。

以上就是关于基本不等式的相关主题的详细介绍,希望能够帮助大家更好地理解和掌握这一数学知识点。

基本不等式课件 篇7

【教学目标】

1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

2.过程与方法:通过实例探究抽象基本不等式;

3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;

【教学难点】

基本不等式 等号成立条件

【教学过程】

1.课题导入

基本不等式 的几何背景:

如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?

教师引导学生从面积的关系去找相等关系或不等关系

2.讲授新课

1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。

2.得到结论:一般的,如果

3.思考证明:你能给出它的证明吗?

证明:因为

所以, ,即

4.1)从几何图形的面积关系认识基本不等式

特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,

通常我们把上式写作:

2)从不等式的性质推导基本不等式

用分析法证明:

要证 (1)

只要证 a+b (2)

要证(2),只要证 a+b- 0 (3)

要证(3),只要证 ( - ) (4)

显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。

3)理解基本不等式 的几何意义

探究:课本第98页的“探究”

在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b。过点C作垂直于AB的弦DE,连接AD、BD。你能利用这个图形得出基本不等式 的几何解释吗?

易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB

即CD= .

这个圆的半径为 ,显然,它大于或等于CD,即 ,其中当且仅当点C与圆心重合,即a=b时,等号成立。

因此:基本不等式 几何意义是“半径不小于半弦”

评述:1.如果把 看作是正数a、b的等差中项, 看作是正数a、b的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项。

2.在数学中,我们称 为a、b的算术平均数,称 为a、b的几何平均数。本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数。

例1 已知x、y都是正数,求证:

(1) ≥2;

(2)(x+y)(x2+y2)(x3+y3)≥8x3y3.

分析:在运用定理: 时,注意条件a、b均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形。

解:∵x,y都是正数 ∴ >0, >0,x2>0,y2>0,x3>0,y3>0

(1) =2即 ≥2.

(2)x+y≥2 >0 x2+y2≥2 >0 x3+y3≥2 >0

∴(x+y)(x2+y2)(x3+y3)≥2 ·2 ·2 =8x3y3

即(x+y)(x2+y2)(x3+y3)≥8x3y3.

3.随堂练习

1.已知a、b、c都是正数,求证

(a+b)(b+c)(c+a)≥8abc

分析:对于此类题目,选择定理: (a>0,b>0)灵活变形,可求得结果。

解:∵a,b,c都是正数

∴a+b≥2 >0

b+c≥2 >0

c+a≥2 >0

基本不等式课件 篇8

[教学目标]

依据《新标准》对《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:

1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题(求最值、证明不等式);培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、不等式的证明)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

二、 [教学重点]

基本不等式 的证明过程及应用。

三、 [教学难点]

1、基本不等式成立时的三个限制条件(简称一正、二定、三相等)的正确理解;

2、灵活利用基本不等式求解实际问题中的最大值和最小值。

四、 [教学方法]

本节课采启发诱导、讲练结合的教学方法,结合现代信息技术多媒体课件、几何画板作为教学辅助手段,加深学生对基本不等式的理解。

[教学用具]

多媒体、几何画板

六、 [教学过程]

教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

具体过程安排如下:

(一)、创设情景,提出问题;

上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?

利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。

同时,(几何画板辅助教学)通过几何画板演示,

让学生更直观的抽象、归纳出结论:

(二)、抽象归纳:

一般地,对于任意实数 ,有 ,当且仅当 时,等号成立。

[问] 你能给出它的证明吗?

学生在黑板上板书。

特别地,当 时,在不等式 中,以 、 分别代替 ,得到什么?

答案: 。

【归纳总结】

如果 都是正数,那么 ,当且仅当 时,等号成立。

我们称此不等式为基本不等式。 其中 称为 的算术平均数, 称为 的几何平均数。

(三)、理解升华:

1、文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

2、符号语言叙述:

若 ,则有 ,当且仅当 时, 。

[问] 怎样理解“当且仅当”?

3、探究基本不等式证明方法:

[问] 如何证明基本不等式?

方法一:作差比较或由 展开证明。

方法二:分析法。

分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。

4、探究基本不等式的几何意义:

读书破万卷下笔如有神,以上就是一米范文范文为大家带来的3篇《2023高中数学基本不等式教学教案》,希望对您有一些参考价值。

基本不等式课件 篇9

教学目的

掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。

教学过程

师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

第一组:1+2=3; a+b=b+a; S =ab; 4+x =7。

第二组:-7 1+4; 2x ≤6, a+2 ≥0; 3≠4。

生:第一组都是等式,第二组都是不等式。

师:那么,什么叫做等式?什么叫做不等式?

生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?

生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。

师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

练习1 (回答)用小于号“”填空。

(1)7 ___ 4;

(2)- 2____6;

(3)- 3_____ -2;

(4)- 4_____-6

练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

7>4;-2<6;-3<-2;-4>-6。

师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:

性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。

(让同学回答。)

性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)

性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)

现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。

不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

师:对a和b有什么要求吗?对c有什么要求?

生:没有什么要求。

师:哪位同学来回答第二、三条性质?

生甲:如果a0, 那么acb,且c>0,那么ac>bc(或

生乙:如果abc(或 );如果a>b,且cb,且c>0,那么ac>bd;(2)如果a>b,那么ac2>bc2;(3)如果ac2>bc2,那么a>b;(4)如果a>b,那么a-b>0;(5)如果ax>b,且a≠0,那么xa;生甲:(1)不对,当c=d≤0时,ac>bd不成立。生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2>bc2不成立。生丙:(3)对,因为ac2>bc2成立,则c2一定大于零,根据不等式基本性质2,得a>b出。(4)对,根据不等式基本性质,由a>b,两边减去b得a-b>0。(5)不对,当a<0时,根据不等式基本性质3,得。(6)不对,因为当b<0时,根据不等式基本性质1,得a+b<a;而当b=0时,则有a+b=a。师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。课外做以下作业:略。教案说明(1) 不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。(2) 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。(3) 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

基本不等式课件 篇10

基本不等式是中学数学的重要概念之一,它在数学中有广泛的应用,是其他不等式的基础和重要工具。本篇文章将围绕基本不等式展开,探讨其相关概念,证明方法和实际应用。

一、基本不等式的概念

基本不等式是指一个数列的平均值大于等于它的几何平均值,即对于任意正整数$n$和正实数$x_1, x_2, ..., x_n$,有$\dfrac{x_1+x_2+...+x_n}{n} \geqslant \sqrt[n]{x_1x_2...x_n}$。

该不等式的意义在于,对于$n$个数的平均数,它越接近各个数的几何平均数,这些数的值的差距就越小。因此,基本不等式可以用来估计一组数据的分布情况和误差范围。

二、基本不等式的证明方法

基本不等式的证明方法有多种,其中比较流行的是数学归纳法和均值不等式法。下面将分别进行讲解。

1. 数学归纳法

(1) 当$n=2$时,我们有$\dfrac{x_1+x_2}{2} \geqslant \sqrt{x_1x_2}$,即$(x_1-x_2)^2 \geqslant 0$,显然成立。

(2) 假设当$n=k$时成立,即$\dfrac{x_1+x_2+...+x_k}{k} \geqslant \sqrt[k]{x_1x_2...x_k}$,现在我们来证明当$n=k+1$时也成立,即$\dfrac{x_1+x_2+...+x_k+x_{k+1}}{k+1} \geqslant \sqrt[k+1]{x_1x_2...x_kx_{k+1}}$。

将不等式两边同乘以$k+1$得到$k\dfrac{x_1+x_2+...+x_k}{k}+(x_{k+1}) \geqslant \sqrt[k+1]{x_1x_2...x_k} \cdot (k\dfrac{x_1+x_2+...+x_k}{k})^\dfrac{1}{k} \cdot x_{k+1}^\dfrac{1}{k+1}$。

根据均值不等式和归纳假设,有$k\dfrac{x_1+x_2+...+x_k}{k} \geqslant \sqrt[k]{x_1x_2...x_k} \geqslant x_{k+1}^\dfrac{1}{k}$,将其代入原式得到$k\dfrac{x_1+x_2+...+x_k}{k}+x_{k+1} \geqslant (k+1) \cdot \sqrt[k+1]{x_1x_2...x_kx_{k+1}}$。

由此证明当$n=k+1$成立。

2. 均值不等式法

通过均值不等式可得:

$\dfrac{x_1+x_2+...+x_n}{n} \geqslant \sqrt[n]{x_1x_2...x_n}$

$\dfrac{(x_1+x_2+...+x_n)(\dfrac{1}{x_1}+\dfrac{1}{x_2}+...+\dfrac{1}{x_n})}{n^2} \geqslant \dfrac{(n\dfrac{1}{\sqrt[n]{x_1x_2...x_n}})^2}{n^2}$

$x_1x_2...x_n(\dfrac{1}{x_1}+\dfrac{1}{x_2}+...+\dfrac{1}{x_n}) \geqslant n^2$

由此证明基本不等式成立。

三、基本不等式的实际应用

基本不等式在很多领域中都有广泛应用。

1. 经济学

基本不等式可以用于证明一个国家的经济发展水平,即该国的平均经济水平越高,其经济增长率越高。这对于财经政策的制定和实施具有重要意义。

2. 物理学

基本不等式也可以被应用到物理学中。例如,它可以描绘热力学中的热力学势函数和热力学系统间的温度规律。

3. 统计学

在统计学中,基本不等式可以用于证明一个样本数据集的方差越大,样本数据之间的差距就越大;反之亦然。

总的来说,基本不等式是数学中非常重要的一个概念。它不仅具有理论表述和证明,还能被应用在实际生活和自然界的各个领域中。相信在以后的学习生活中,基本不等式会成为越来越重要的知识点。

基本不等式课件 篇11

基本不等式是初中数学中重要的一章内容,也是高中数学和竞赛数学的基础。基本不等式的学习不仅有助于提高学生的数学素养和解题能力,同时也能帮助他们提高逻辑思维能力。本文旨在探讨“基本不等式”这一主题。

一、基本不等式的定义与性质

基本不等式是说:对于正实数x1,x2,…,xn,有

(x1+x2+…+xn)/n≥√(x1x2…xn),当且仅当x1=x2=…=xn时等号成立。

基本不等式的性质有以下几条:

(1)当n为偶数时,等号成立;

(2)当n为奇数时,当且仅当所有数相等时等号成立;

(3)两个数的平均数不小于它们的几何平均数,即(a+b)/2≥√(ab),其中a,b均为正实数且a≠b;

(4)当n≥3时,三个数的平均数不小于它们的几何平均数,即(a+b+c)/3≥√(abc),其中a,b,c均为正实数且a≠b≠c。

二、基本不等式的应用

基本不等式作为一种重要的数学工具,可以应用于众多问题之中。以下是基本不等式的一些常见应用。

1. 求和式的最小值

例题1:已知-x1+x2+x3+x4+x5=-18,其中x1,x2,x3,x4,x5均为正数,并且x1+x2+x3+x4+x5≥5,则x1x2x3x4x5的最小值为多少?

解法:根据已知条件,设x1+x2+x3+x4+x5=5+m(其中m≥0),则有x1+x2+x3+x4+x5+m=5+2m。代入到基本不等式中可得:

(x1+x2+x3+x4+x5+m)/5≥√(x1x2x3x4x5)m/5≥√(x1x2x3x4x5)/5

移项得到x1x2x3x4x5≥1,则x1x2x3x4x5的最小值为1。

2. 比较函数大小

例题2:比较函数f(x)=√(a²+x²)+√(b²+(c-x)²)(a,b,c>0)在[0,c]上的最小和最大值。

解法:根据已知条件和基本不等式,将f(x)分解成两个正数的平均数不小于它们的几何平均数的形式,即

f(x)=[√(a²+x²)+√(b²+(c-x)²)]/2+1/2[√(a²+x²)+√(b²+(c-x)²)]

≥√[(√(a²+x²)×√(b²+(c-x)²)]+1/2(2c)

=√(a²+b²+c²+ab-ac-bc)+c

当x=c/3时等号成立,即f(x)的最小值为√(a²+b²+c²+ab-ac-bc)+c,最大值为√(a²+b²+c²+ab+ac+bc)+c。

3. 求极限

例题3:已知数列{a_n}(n≥1)的通项公式为a_n=(√n+1)/(n+1),则求∑(n从1到∞)a_n的极限。

解法:根据基本不等式,有

a_1+a_2+…+a_n≥n(√(a_1a_2…a_n))^1/n

代入已知条件,可得:

a_1+a_2+…+a_n≥n[(√(1+1)×√(2+1)×…×√(n+1))/((1+1)×(2+1)×…×(n+1))]^(1/n)

= n[√(n+1)/2×1/3×…×1/(n+1)]^(1/n) =n[(n+1)/[2(n+1)]]^(1/n)

极限为1/2。

4. 求证不等式

例题4:已知a,b,c为正实数,且a+b+c=1,证明∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)。

解法:将不等式化简,得:

∑(a/(1-a))≥3(a²+b²+c²)/(ab+bc+ca)

⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3(a²+b²+c²)/(ab+bc+ca)

⇔(a/(1-a))+(b/(1-b))+(c/(1-c))≥3[(a+b+c)²-(ab+bc+ca)]/(ab+bc+ca)

由于a+b+c=1,有

(ab+bc+ca)≤a²+b²+c²,

(a/(1-a))+(b/(1-b))+(c/(1-c))≥(a+b+c)²/(a(1-a)+b(1-b)+c(1-c))≥3(a²+b²+c²)/(ab+bc+ca)

其中第一个不等式成立是因为当a=b=c=1/3时,等号成立;第二个不等式用到了基本不等式的形式。

综上所述,基本不等式是数学中的重要概念,掌握了基本不等式的定义、性质和应用方法,将有助于提高人们的数学素养和解题能力。在日常生活和学习中,要重视基本不等式的学习和应用,逐步提高自己的数学水平。

基本不等式课件 篇12

基本不等式作为高中数学必修内容之一,在学生学习中扮演着极为重要的角色。本篇文章将围绕基本不等式,探讨它的概念、性质、证明方法及应用,并展示基本不等式的魅力和实用性。

一、基本不等式的概念

基本不等式是指对于任意正实数 $a_1,a_2,\cdots,a_n$ 和任意正整数 $n$,有以下不等式成立:

$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

这个不等式也被称为均值不等式或AM-GM不等式。其中,$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}$ 表示这些数的算术平均值,而 $\sqrt[n]{a_1a_2\cdots a_n}$ 表示这些数的几何平均值。均值不等式的意义在于,算术平均数大于等于几何平均数。

二、基本不等式的性质

基本不等式有以下几个性质:

1. 当且仅当 $a_1=a_2=\cdots=a_n$ 时等号成立。

2. 如果 $a_1,a_2,\cdots,a_n$ 中至少有一个数为 $0$,则 $\sqrt[n]{a_1a_2\cdots a_n}=0$,这时等号成立。

3. 基本不等式可以扩展到实数范围内。

4. 均值不等式不等式对于大于 $0$ 的实数都成立。

三、基本不等式的证明方法

基本不等式有多种证明方法,下面列举其中两种:

方法一:数学归纳法

假设基本不等式对于 $n=k$ 时成立,即对于 $k$ 个正实数 $a_1,a_2,\cdots,a_k$,有以下不等式成立:

$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$

现证明它对于 $n=k+1$ 时也成立。将 $a_{k+1}$ 插入到原来的不等式中,得到:

$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$

由于:

$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$

因此,我们只需证明以下不等式:

$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$

经过变形化简,可以得到:

$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$

显然,这是成立的。

因此,按照归纳法的证明方式,基本不等式对于所有的正整数 $n$ 都成立。

方法二:对数函数的应用

对于 $a_1,a_2,\cdots,a_n$,我们可以定义函数:

$f(x)=\ln{x}$

显然,函数 $f(x)$ 是连续的、单调递增的。根据式子:

$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

可以得到:

$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$

即:

$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$

对于左边的式子,有:

$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$

对于右边的式子,有:

$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$

因此,我们可以得到:

$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$

即:

$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$

这正是均值不等式的形式。因此,基本不等式得证。

四、基本不等式的应用

基本不等式在数学和物理学中有广泛的应用。下面介绍几个常见的应用场景:

1. 最小值求解

如果有 $n$ 个正实数 $a_1,a_2,\cdots,a_n$,它们的和为 $k$,求它们的积的最大值,即:

$\max(a_1a_2\cdots a_n)$

根据基本不等式,有:

$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

因此,可以得到:

$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

两边同时取幂,可以得到:

$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$

即:

$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$

2. 凸函数的优化问题

如果 $f(x)$ 是一个凸函数,$a_1,a_2,\cdots,a_n$ 是正实数,$b_1,b_2,\cdots,b_n$ 是任意实数且 $\sum_{i=1}^n b_i=1$,则有:

$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$

这是凸函数的优化问题中常用的基本不等式形式。它可以通过Jensen不等式或基本不等式证明。

3. 三角形求证

如果我们可以用 $a,b,c$ 表示一个三角形的三边长,则有:

$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$

这个不等式在三角形求证中也被广泛应用。

五、结语

基本不等式是高中数学必修内容之一,但其实它的应用范围远不止于此。在实际问题中,基本不等式常常能给我们提供有效的解决方案。通过本文的介绍,希望读者能够更加深入地理解基本不等式的概念、性质、证明方法及应用,并能在实际问题中灵活运用。

$ 的实数都成立。

三、基本不等式的证明方法

基本不等式有多种证明方法,下面列举其中两种:

方法一:数学归纳法

假设基本不等式对于 $n=k$ 时成立,即对于 $k$ 个正实数 $a_1,a_2,\cdots,a_k$,有以下不等式成立:

$\dfrac{a_1}{k}+\dfrac{a_2}{k}+\cdots+\dfrac{a_k}{k}\geq\sqrt[k]{a_1a_2\cdots a_k}$

现证明它对于 $n=k+1$ 时也成立。将 $a_{k+1}$ 插入到原来的不等式中,得到:

$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}+\dfrac{a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$

由于:

$\dfrac{a_1}{k+1}+\dfrac{a_2}{k+1}+\cdots+\dfrac{a_k}{k+1}\geq\sqrt[k]{a_1a_2\cdots a_k}$

因此,我们只需证明以下不等式:

$\dfrac{(k+1)\sqrt[k]{a_1a_2\cdots a_k}\cdot a_{k+1}}{k+1}\geq\sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$

经过变形化简,可以得到:

$\sqrt[k]{a_1a_2\cdots a_k} \geq \sqrt[k+1]{a_1a_2\cdots a_k a_{k+1}}$

显然,这是成立的。

因此,按照归纳法的证明方式,基本不等式对于所有的正整数 $n$ 都成立。

方法二:对数函数的应用

对于 $a_1,a_2,\cdots,a_n$,我们可以定义函数:

$f(x)=\ln{x}$

显然,函数 $f(x)$ 是连续的、单调递增的。根据式子:

$\dfrac{a_1}{n}+\dfrac{a_2}{n}+\cdots+\dfrac{a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

可以得到:

$\ln\left(\dfrac{a_1}{n}\right)+\ln\left(\dfrac{a_2}{n}\right)+\cdots+\ln\left(\dfrac{a_n}{n}\right)\geq\dfrac{1}{n} (\ln a_1+\ln a_2+\cdots+\ln a_n)$

即:

$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)\leq\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}$

对于左边的式子,有:

$\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)=\dfrac{1}{n}\ln(a_1a_2\cdots a_n)$

对于右边的式子,有:

$\dfrac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n}=\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$

因此,我们可以得到:

$\ln(a_1a_2\cdots a_n)\geq n\ln\left(\sqrt[n]{a_1a_2\cdots a_n}\right)$

即:

$a_1a_2\cdots a_n\geq\left(\sqrt[n]{a_1a_2\cdots a_n}\right)^n$

这正是均值不等式的形式。因此,基本不等式得证。

四、基本不等式的应用

基本不等式在数学和物理学中有广泛的应用。下面介绍几个常见的应用场景:

1. 最小值求解

如果有 $n$ 个正实数 $a_1,a_2,\cdots,a_n$,它们的和为 $k$,求它们的积的最大值,即:

$\max(a_1a_2\cdots a_n)$

根据基本不等式,有:

$\dfrac{a_1+a_2+\cdots+a_n}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

因此,可以得到:

$\dfrac{k}{n}\geq\sqrt[n]{a_1a_2\cdots a_n}$

两边同时取幂,可以得到:

$\dfrac{k^n}{n^n}\geq a_1a_2\cdots a_n$

即:

$\max(a_1a_2\cdots a_n)=\dfrac{k^n}{n^n}$

2. 凸函数的优化问题

如果 $f(x)$ 是一个凸函数,$a_1,a_2,\cdots,a_n$ 是正实数,$b_1,b_2,\cdots,b_n$ 是任意实数且 $\sum_{i=1}^n b_i=1$,则有:

$f(b_1a_1+b_2a_2+\cdots+b_na_n)\leq b_1f(a_1)+b_2f(a_2)+\cdots+b_nf(a_n)$

这是凸函数的优化问题中常用的基本不等式形式。它可以通过Jensen不等式或基本不等式证明。

3. 三角形求证

如果我们可以用 $a,b,c$ 表示一个三角形的三边长,则有:

$\sqrt{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}\leq\dfrac{(a+b+c)^2}{4\sqrt{3}}$

这个不等式在三角形求证中也被广泛应用。

五、结语

基本不等式是高中数学必修内容之一,但其实它的应用范围远不止于此。在实际问题中,基本不等式常常能给我们提供有效的解决方案。通过本文的介绍,希望读者能够更加深入地理解基本不等式的概念、性质、证明方法及应用,并能在实际问题中灵活运用。

本文来源: http://m.dg15.com/a/6161262.html

上一篇:秋季运动会开幕词300字

下一篇:入党申请书2024年3月范文(摘录八篇)

相关推荐
不等式与不等式组教案推荐
2023.05.25 不等式教案
不等式课件(集合13篇)
2023.04.23 不等式课件
最新不等式课件六篇
2023.09.29 不等式课件
2024不等式课件精选七篇
2024.08.20 不等式课件
2024不等式课件精品5篇
2024.02.23 不等式课件
2023一元二次不等式课件6篇
2023.06.02 一元二次不等式课件 一元不等式课件 不等式课件
比例的基本性质课件(推荐12篇)
2023.07.10 比例基本性质课件 比例性质课件 性质课件
等式课件系列10篇
2023.11.13 等式课件
最新更新
2024年国庆节活动方案
2024.09.27 活动方案国庆节 国庆节活动方案 少先队国庆节活动方案
不等式求解器iPhone版
2024.09.27
元旦说说文案对男朋友说的(收藏49句)
2024.09.27 男朋友说说 男朋友文案 男朋友早安说说
一年级开学第一课主题班会ppt内容(精选11篇)
2024.09.27 开学第一课班会主题 一年级开学第一课教案 开学第一课主题班会
检讨书六年级(汇集8篇)
2024.09.27 六年级检讨书 六年级 六年级倡议书
优秀入团申请书600字初中生
2024.09.27 初中生申请书 初中生贫困申请书 初中生补助申请书
狩猎时刻开了高帧率很卡怎么办
2021.09.02 狩猎时刻开高帧率画面很卡 狩猎时刻高帧率开启卡顿 狩猎时刻开了画面卡顿
除夕祝福语短句八个字(汇总五十九句)
2024.09.27 祝福语简短八个字 生日祝福语八个字霸气 元旦祝福语八个
小年文案简短霸气句子大全(集合53句)
2024.09.27 小年文案 小年句子 北方小年文案
教师节文案手抄报简单(摘录38句)
2024.09.27 教师节手抄报内容 教师节主题手抄报 年级教师节手抄报
中秋节的短句子很短很短的句子(集合73句)
2024.09.27 中秋节的句子 祝福中秋节的句子 祝福中秋节快乐的句子
工作总结 最新更新 网站地图