2024高三数学优质课教案。
作为一名无私奉献的老师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编帮大家整理的高中数学优秀教案(通用13篇),希望能够帮助到大家。
2024高三数学优质课教案 篇1
本学期即将结束,现就这学期的教学情况进行反思。
高三是中学生生物学习非常重要的时期,也是巩固基础、优化思维、提高能力的重要阶段,高三生物总复习的效果将直接影响高考成绩。为了使学生对高三生物总复习有良好的效果,我进行总结和反思下几点:
一、研究高考信息,把握复习方向
怎样着手进行生物总复习,复习的目的和任务是什么?这是刚刚进入高三的同学所面临的第一个问题,也是教师在高三生物教学过程中所面临的第一个问题。要解决好这个问题,就必须对一些信息进行研究,从中领会出潜在的导向作用,看准复习方向,为完成复习任务奠定基础。研究高考信息主要从熟悉高考考纲和研究高考生物试题这两方面着手。
二、合理利用复习资料
高三生物教学过程中必须保持清醒的头脑,处理好教材和复习资料的关系。教材是生物总复习的根本,它的作用是任何资料都无法替代的。在生物总复习中的抓纲务本就是指复习以考试说明作指导,以教材为主体,通过复习,使中学生物知识系统化、结构化、网络化,并在教材基础上进行拓宽和加深,而复习资料的作用则是为这种目的服务,决不能本末倒置,以复习资料代替教材。我们以《创新设计》作为参考,供整理知识,练习使用,在复习的过程中应随时回归教材,找到知识在教材中的落脚点和延伸点,不断完善和深化中学生物知识。这些资料的使用必须合理,这样对教师提出了很高的要求,老师自身必须投入题海,然后筛选训练题和资料,干扰复习、浪费时间。
三、精心设计课堂教学
由于高三是对旧知识进行复习,而高考不是单纯考知识点,因此在复习时要注重前后联系比较密切的知识点的复习,这便是学科内综合的支点,但注意不必太深。因此我在高三生物复习过程中注重学科内知识的联系,抓住教材知识的主线,加以梳理、归类和整理,并通过一定的组合方式有机组合,形成完整的知识体系和结构,建立知识网络。积极创设问题情境,正确引导学生在学习中领会生物学知识点的本质的联系,通过概念图的学习法构建生物学知识框架和知识体系。这样既有利于学生对基础知识的复习,更有助于学科内各知识点之间的迁移和综合。在复习过程中还应该注意讲练结合。
四、注重知识体系的重组,形成学科知识网络
由于高三是在高二学习的基础上,对旧知识进行复习,所以高三的课堂教学既要源于教材,又要对教材内容进行调整、扩展和深化。从往年的高考试题看,试题编制是从新情况、热点向下入手,但考查内容仍是书中的基础知识,即使是综合考试题也是如此,因此,切不可忽视基础知识的教学,要尊纲依本,研究考纲,认真完成本学科内的基本概况、原理的复习,并注重学科内知识的联系,抓住教材知识的主线,加以梳理、归类和整理,并通过一定的组合方式有机组合,形成完整的知识体系和结构,建立知识网络。这样既有利于学生对基础知识的复习,更有助于学科内各知识点之间的迁移和综合。这就是一轮复习的主要任务。例如,“细胞”一章中组成原生质的化学成分按一定的.方式有机组合,可以体现细胞和生物体的生命现象,细胞是这些物质最基本的结构形状。细胞内各种结构从功能上看,并不是彼此孤立的,而是互相联系、协调一致的。一个细胞是一个统一的整体。“生物的新陈代谢”一章中的各种代谢的相关性,如同化作用和异化作用、物质代谢和能量代谢、水分矿质元素的吸收和运输、光合作用和呼吸作用、有氧呼吸和无氧呼吸、高等多细胞动物体呼吸的过程等。
上面几点是我在经历了一个学期高三综合科复习教学后所得到的教学上的感想。希望在今后的教学中能有更好的发挥,做好高考备考的教学工作。
2024高三数学优质课教案 篇2
一、基本知识概要:
1.直线与圆锥曲线的位置关系:相交、相切、相离。
从代数的角度看是直线方程和圆锥曲线的方程组成的方程组,无解时必相离;有两组解必相交;一组解时,若化为x或y的方程二次项系数非零,判别式⊿=0时必相切,若二次项系数为零,有一组解仍是相交。
2.弦:直线被圆锥曲线截得的线段称为圆锥曲线的弦。
焦点弦:若弦过圆锥曲线的焦点叫焦点弦;
通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径。
3.①当直线的斜率存在时,弦长公式:
=或当存在且不为零时
,(其中(),()是交点坐标)。
②抛物线的焦点弦长公式|AB|=,其中α为过焦点的直线的倾斜角。
4.重点难点:直线与圆锥曲线相交、相切条件下某些关系的确立及其一些字母范围的确定。
5.思维方式:方程思想、数形结合的思想、设而不求与整体代入的技巧。
6.特别注意:直线与圆锥曲线当只有一个交点时要除去两种情况,些直线才是曲线的切线。一是直线与抛物线的对称轴平行;二是直线与双曲线的渐近线平行。
二、例题:
【例1】直线y=x+3与曲线()
A。没有交点B。只有一个交点C。有两个交点D。有三个交点
〖解〗:当x>0时,双曲线的渐近线为:,而直线y=x+3的斜率为1,10因此直线与椭圆左半部分有一交点,共计3个交点,选D
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
(1)若一等差数列{an}的首项是,公差是d,则据其定义可得:
a2-a1=d 即:a2=a1+d
a3-a2=d 即:a3=a2+d
……
猜想:
a40= a1+39d
进而归纳出等差数列的通项公式: an=a1+(n-1)d
设计思路:在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论的通项公式。通过总结的通项公式由学生猜想的通项公式,进而归纳 的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识,又化解了教学难点。
(2)此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——迭加法:
a2-a1=d
a3=a2+d
……
an-an-1=d 将这n-1个等式左右两边分别相加,就可以得到 an–a1= (n-1) d即an=a1+(n-1) d ,当n=1时,此式也成立,所以对一切n∈N﹡,上面的公式都成立,因此它就是等差数列{an }的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n-1个等式。将n-1个等式相加,证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求。
(三)巩固新知应用例解
例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
例2 在等差数列{an}中,已知a5=10, a20=31,求首项与公差d。
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的三个量已知时,可根据该公式求出第四个量。
例3 梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法。
(四)反馈练习
1、课后的练习中的第1题和第2题(要求学生在规定时间内完成)。
目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、课后习题第3题和第4题。
目的:对学生加强建模思想训练。
(五)归纳小结、深化目标
1.等差数列的概念及数学表达式an-an-1=d (n≥1)。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
2.等差数列的通项公式会知三求一。
3.用“数学建模”思想方法解决实际问题。
(六)布置作业
必做题:课本习题第2,6 题
选做题:已知等差数列{an}的首项= -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
2024高三数学优质课教案 篇3
一、教学目标
1、帮助学生全面回顾和巩固高中数学知识,形成系统的数学知识体系。
2、提高学生运用数学知识解决实际问题的能力,加强数学思维的训练。
3、培养学生的数学素养和创新能力,为高考数学做好准备。
二、教学重难点
1、重点:函数与导数、数列、三角函数、立体几何、解析几何等高中数学核心知识点。
2、难点:数学知识的综合运用,特别是在解决复杂问题时的逻辑推理与数学建模能力。
三、教学方法
1、讲授法:系统梳理数学知识,明确复习目标和重点。
2、练习法:通过大量练习,巩固学生的数学基础,提高解题能力。
3、讨论法:针对数学问题展开讨论,激发学生的数学思维,提高解决问题的能力。
四、教学过程
(一)导入新课(5分钟)
1、简要介绍本节课的复习目标和重点,明确学习方向。
2、回顾上节课内容,引出本节课的复习内容。
(二)函数与导数复习(15分钟)
1、回顾函数的基本概念和性质,如定义域、值域、单调性、奇偶性等。
2、强调导数的概念和应用,如求函数的最值、判断函数的单调性等。
3、通过典型例题,讲解函数与导数的综合应用。
(三)数列复习(15分钟)
1、回顾数列的基本概念和性质,如等差数列、等比数列的通项公式和求和公式。
2、强调数列在实际问题中的应用,如贷款计算、人口增长等。
3、通过典型例题,讲解数列的综合应用。
(四)三角函数复习(15分钟)
1、回顾三角函数的基本概念和性质,如正弦、余弦、正切的定义和性质。
2、强调三角函数的图像和性质,如周期性、奇偶性等。
3、通过典型例题,讲解三角函数在解三角形和实际问题中的应用。
(五)立体几何复习(15分钟)
1、回顾立体几何的基本概念和性质,如空间直线、平面、多面体的性质和公式。
2、强调立体几何的解题方法和技巧,如空间向量的应用。
3、通过典型例题,讲解立体几何在解决实际问题中的应用。
(六)解析几何复习(15分钟)
1、回顾解析几何的基本概念和性质,如直线、圆、椭圆、双曲线和抛物线的方程和性质。
2、强调解析几何的解题方法和技巧,如利用韦达定理解决直线与二次曲线的交点问题。
3、通过典型例题,讲解解析几何在解决实际问题中的应用。
(七)课堂小结(5分钟)
1、总结本节课的复习内容,强调重点和难点。
2、布置课后作业:要求学生整理本节课的复习笔记,并针对自己的薄弱环节进行有针对性的练习。
2024高三数学优质课教案 篇4
一、教学目标
1、回顾并巩固高中数学的核心知识点,构建完整的知识体系。
2、提高学生解决数学问题的能力,包括代数、几何、三角函数、数列、概率统计等。
3、培养学生的数学逻辑思维和解题技巧,为高考数学做好充分准备。
二、教学重难点
1、重点:函数、数列、三角函数、解析几何、立体几何、概率统计等核心知识点。
2、难点:知识点的综合运用,特别是在解决复杂问题时的逻辑分析与推理能力。
三、教学方法
1、讲授法:系统梳理数学知识,明确复习重点和难点。
2、练习法:通过大量练习题,提高学生的解题能力和速度。
3、讨论法:针对典型问题进行讨论,引导学生自主思考,提高解题技巧。
四、教学过程
(一)导入新课(5分钟)
1、简要介绍本节课的复习目标和重点,明确学习方向。
2、引导学生回顾上节课的内容,为新知识的学习做好铺垫。
(二)代数部分复习(20分钟)
1、系统梳理函数、数列等代数知识点,强调重点概念和公式。
2、通过例题和练习题,让学生熟悉代数问题的解题方法和技巧。
3、引导学生总结代数问题的常见类型和解题思路。
(三)三角函数部分复习(15分钟)
1、回顾三角函数的定义、性质和图像,强调正弦、余弦、正切等函数的性质。
2、通过例题和练习题,让学生掌握三角函数问题的解题方法和技巧。
3、引导学生总结三角函数问题的常见类型和解题思路。
(四)解析几何部分复习(15分钟)
1、系统梳理直线、圆、椭圆、双曲线等解析几何知识点,强调基本公式和性质。
2、通过例题和练习题,让学生掌握解析几何问题的解题方法和技巧。
3、引导学生总结解析几何问题的常见类型和解题思路。
(五)立体几何部分复习(10分钟)
1、回顾立体几何的基本概念和性质,如空间直线、平面、多面体等。
2、通过例题和练习题,让学生掌握立体几何问题的解题方法和技巧。
3、引导学生总结立体几何问题的常见类型和解题思路。
(六)概率统计部分复习(10分钟)
1、回顾概率统计的基本概念和公式,如随机事件、概率、期望等。
2、通过例题和练习题,让学生掌握概率统计问题的解题方法和技巧。
3、引导学生总结概率统计问题的常见类型和解题思路。
(七)课堂小结(5分钟)
1、总结本节课的复习内容,强调重点和难点。
2、布置课后作业:要求学生整理本节课的复习笔记,并针对自己的薄弱环节进行有针对性的练习。
2024高三数学优质课教案 篇5
本学期我担任高三(2)、高三(13)两个班的数学教学工作。本届高三在教学时间上由于受各方面的影响,多多少少被占用了一些教学时间,使高三教学显得尤为紧张,转瞬间一学期又过去了,加之在几届高三的教学中,总是感到很茫然,时常在反思如何才能提高学生的成绩现就自己在教学中的几点体会反馈如下:
一、如何让数学复习课的课堂真正“活”起来
高三数学课型以复习课为主,大容量、大密度;如果教师不停的讲,学生被动地理解;到头来是教师讲得很多,很累,口干舌躁,学生却是听得很困,很烦,昏昏欲睡,这样的教学效果可想而知。
不可否认,到了高三以后,复习的时间紧、任务重,教师急于把尽可能多的知识都传授给学生,但不能仅仅因为这个原因而一味的苦教,不顾及学生的感受;不顾及学生的理解程度;不顾及学生的学习实际。
我觉得高三复习课仍然要备学生,仍然要讲究教法,仍然要充分调动学生积极参与课堂教学的主动性。针对我校学生普遍基础较差这一实际情景,更要贯彻“以学生为主体”的课堂教学理念,学生真正的动起来了,课堂效果也就会大幅度的提高。要让学生真正成为课堂教学的主动参与者,而不是旁观者。
二、如何恰当地处理好课本与复习资料的关系
到了高三复习阶段,每个学科选配一种复习资料是适应高三复习和适应高考的`必然选择,如何用好复习资料,让它发挥最大的效益;如何处理好课本与复习资料的关系;这是高三复习课过程中首先要解决的一个基础性问题。
我校学生进校时基础就比较差,必须以基础为主,以本为本。所以在第一轮复习时,要紧扣课本,以基础训练为主,查找知识上存在的漏洞和缺陷;然后针对学生作练习时暴露出的问题,再有目的选编练习题、例题进行精讲精练,从而消除学生知识上的盲点,对知识上的薄弱环节进行巩固和加深。
对于复习资料上的资料,教师要进行合理的取舍,不能采用拿来主义。每复习完一章以后,再次经过单元检测、试卷讲评查漏补缺,并让学生详细阅读课本上的本章教学资料,以便使知识系统化,条理化,绝不能留下空白点。
三、如何很好的把握教学难度
高三复习过程中,最难把握的就是教学的难度问题。
近年来,高考试题的难度逐渐趋于平稳,教学上如何应对我认为首先抓好“双基”不放松是前提和基础;其次,在牢固掌握知识的前提下,适当的坚持一些难度是必要的,也是必须的。
在上课时选取适当难度的例题或课余布置一些有难度的题目,会给学生必须的新鲜感和有利刺激,激发学生的学习兴趣和增强好胜感,从而有利于培养学生的个性品质。
结合我校学生的实际情景,必须抓好基础,难度过高,过大的题目不要涉及太多。主要是要规范学生的解题步骤,培养学生的数学思维品质,高考说明对学生的个性品质的要求是:“要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。
四、如何有效的进行试卷讲评
高三复习课离不开试卷讲评如何才能使试卷讲评起到它应有的效果呢长期以来,总是教师讲,学生听,结果是学生听的提不起精神,教师讲的津津有味,最终的效果还是不如人意。
我认为我们应当大胆的放手,把试卷交给学生,让学生自己去研究,去探索,去思考,去讲解,教师只要做学生的指导者,点拨者就能够了。
以上几点是我的一点儿想法,期望能与同行共勉。
2024高三数学优质课教案 篇6
(1)抓学习节奏。
数学的复习备考分为不同的阶段,不同的教学方式交替使用。
没有一定的速度是无效率的复习与学习,慢腾腾的学习训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在高三复习备考教学的全过程中一定要有节奏,这样久而久之,思维的敏捷性和数学能力就会逐步提高。
(2)抓知识形成、重视解题过程的教学。
数学的一个概念、定义、公式、法则、定理等都是数学的基础知识,这些知识的形成过程容易被忽视。
事实上,这些知识的形成过程正是数学能力的培养过程。
一个定理的证明,往往是新知识的发现过程。
因此,要改变重结论轻过程的教学方法,解题过程的教学就是数学能力培养的过程。
(3)抓复习资料的.处理。
复习备考的过程是活的,学生的学习也是不断变化的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,复习资料并不能完全反映出来。
数学能力是随着知识的发生而同时形成的,无论是重温一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。
通过老师的引导,理解所复习内容在高中数学体系及高考中的地位,弄清与前后知识的联系等。
(4)抓问题暴露。
在数学课堂教学中,老师一般少不了提问与板演,有时还伴随着问题讨论。
因此可以听到许多的信息,这些问题是开放的。
对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来。
暴露了的问题要及时抓,遗留的问题要有针对性地补,注重实效。
(5)抓课堂练习。
数学课的课堂练习时间每节课大约占20%左右,这是对数学知识记忆、理解、掌握的重要手段,必须坚持不懈,这既是一种速度训练,又是能力的检测。
学生做题是无心的,而教师所寻找的例题是有心的,哪些知识需要补救、巩固、提高,哪些知识、能力需要培养、加强应用,上课应有针对性。
(6)抓解题指导。
要合理选择解题方法,优化运算途径,这不仅是迅速运算的需要,也是运算准确性的需要。
运算的步骤越多,繁度就越大,出错的可能性就会增大。
因而根据问题的条件和要求合理地选择解题方法、优化运算途径不但是提高运算能力的关键,也是提高其他数学能力的有效途径。
(7)抓数学思维方法的训练。
数学学科担负着培养运算能力、逻辑思维能力、空间想象力以及运用所学知识分析问题、解决问题的重任,它的特点是具有高度的抽象性、逻辑性与广泛的适用性,对能力的要求较高。
数学能力只有在数学思想方法不断地运用中才能培养和提高。
2024高三数学优质课教案 篇7
教学目标:
1、回顾并巩固高三数学课程的核心知识点,如函数、数列、三角函数、解析几何等。
2、提高学生的数学解题能力和思维水平,熟悉高考数学题型和解题技巧。
3、培养学生的数学逻辑思维和创新能力,为高考做好准备。
教学重难点:
1、重点:函数的性质、数列的通项与求和、三角函数的性质与图象、解析几何中的基本定理与公式等。
2、难点:复杂函数的图象与性质、数列的综合应用、三角函数的变换与求值、解析几何中的难题求解等。
教学方法:
讲授法、讨论法、练习法、案例分析法。
教学准备:
多媒体课件、高考数学真题和模拟题、数学工具(如计算器、几何画板等)。
教学过程:
一、导入(5分钟)
简要介绍本节课的复习目标和内容。
二、知识回顾与梳理(30分钟)
(一)按照章节顺序,逐个复习高三数学课程的重要知识点,包括函数、数列、三角函数、解析几何等。
1、函数:复习函数的定义、性质、图象、最值等。
2、数列:复习数列的定义、通项公式、求和公式、数列的应用等。
3、三角函数:复习三角函数的定义、性质、图象、变换与求值等。
4、解析几何:复习平面几何与空间几何的基本定理、公式、解题方法等。
(二)通过例题和练习题,帮助学生巩固和加深对知识点的`理解。
三、难点解析与突破(20分钟)
(一)针对学生在学习中遇到的难点问题进行深入解析。
1、复杂函数的图象与性质:通过绘制函数图象、分析函数性质等方法,帮助学生理解复杂函数的图象与性质。
2、数列的综合应用:通过讲解数列在现实生活中的应用案例,帮助学生理解数列的综合应用方法。
3、三角函数的变换与求值:通过讲解三角函数的变换公式、求值方法等,帮助学生掌握三角函数的变换与求值技巧。
4、解析几何中的难题求解:通过讲解解析几何中的难题求解方法,如坐标法、向量法等,帮助学生提高解题能力。
(二)通过练习和讨论,帮助学生突破难点,提高解题能力。
四、练习巩固与提高(20分钟)
1、发放高考真题和模拟题,让学生独立完成。
2、教师巡视指导,帮助学生解决问题。
五、课堂小结(5分钟)
1、总结本节课复习的内容和重点知识点。
2、强调数学学习的方法和解题技巧,鼓励学生多思考、多练习、多总结。
3、布置课后作业。
2024高三数学优质课教案 篇8
我们从一出生到耋耄之年,一直就没有离开过数学,或者说我们根本无法离开数学,这一切有点像水之于鱼一样。小编准备了高三文科数学第二轮复习教学计划,具体请看以下内容。
第二轮复习,教师必须明确重点,对高考考什么,怎样考,应了若指掌.只有这样,才能讲深讲透,讲练到位。
二轮复习中要进行模拟练习并提高模拟练习效果,模拟练习效果直接关系到最后的成绩。
(1)明确模拟练习的目的。考生一要检测知识的全面性,方法的熟练性和运算的准确性,发现自己的某些不足或空白,以求复习时有的放矢;二要在平时考试中练就考试技能技巧,学会合理安排时间,达到既快又对;三要提高应试的心理素质,能够在任何状况下都心态平和,保证大脑对试题的兴奋度。
(2)严格有规律地进行限时训练。二轮复习时间紧,任务重,学生要进行限时训练,特别是强化对解答选择题、填空题的限时训练,并在速度体验中提高正确率,将平时考试当作高考,严格按时完成。
(3)先做练习后看答案。模拟练习时应该先模拟高考完成整套练习,最后对照答案给自己打分,甚至可以记录时间及分数,感受自己进步的过程。边看答案边做练习的过程是很难使自己的能力得到提升的。
(4)注重题后反思。出现问题不可怕,可怕的是不知道问题的存在。对错题从各种角度反复处理,争取相同的错误只犯一次及时处理问题,争取问题不过夜。
高三文科数学第二轮复习课程实施
备考复习资料编写要求
1、 科学性:知识必须准确无误,表述要严谨、科学;试题要精选,要紧扣提纲,不能有偏、怪、错题。
2、 系统性:条理清楚,有利于学生复习、巩固和练习,有利于教师课堂教学及反馈指导。
3、 针对性:针对本校、本年级学生实际,所选例题、练习题,及针对性训练应有层次性以适宜不同班学生的需求。所有例题、练习题及专题都应有答案提示。
4、 分文、理科编写。每个专题在实际实施前两周将电子稿件与文本一并提交编写组讨论,实施前一周打印分发。
应试复习教学要求
1. 关注学生思维发展
2. 关注学生获取知识的质量
3. 关注学生应用知识的灵活性和综合性
4. 关注学生数学意识、数学能力的形成
5. 关注学生数学思想、数学方法的形成
6. 关注学生个人情感发展与个性思维品质的形成
7. 关注学生学习状态、学习情绪、应试心理
8. 关注对学生学习情况的反馈指导与个别辅导
2024高三数学优质课教案 篇9
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
五、作业:
略
2024高三数学优质课教案 篇10
教学目标:
1.理解流程图的选择结构这种基本逻辑结构.
2.能识别和理解简单的框图的功能.
3.能运用三种基本逻辑结构设计流程图以解决简单的问题.
教学方法:
1.通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.
2.在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.
教学过程:
一、问题情境
1.情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为
其中(单位:)为行李的重量.
试给出计算费用(单位:元)的一个算法,并画出流程图.
二、学生活动
学生讨论,教师引导学生进行表达.
解算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1-2-6.
在上述计费过程中,第二步进行了判断.
三、建构数学
1.选择结构的概念:
先根据条件作出判断,再决定执行哪一种
操作的结构称为选择结构.
如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.
2.说明:
(1)有些问题需要按给定的条件进行分析、比较和判断,并按判
断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;
(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;
(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执
行,但或两个框中可以有一个是空的,即不执行任何操作;
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和
两个退出点.
3.思考:教材第7页图所示的算法中,哪一步进行了判断?
2024高三数学优质课教案 篇11
[学习目标]
(1)会用坐标法及距离公式证明Cα+β;
(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。
[学习重点]
两角和与差的正弦、余弦、正切公式
[学习难点]
余弦和角公式的推导
[知识结构]
1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)
2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。
4、关于公式的正用、逆用及变用
2024高三数学优质课教案 篇12
教学目标
1.理解同向不等式,异向不等式概念;
2.掌握并会证明定理1,2,3;
3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;
4.初步理解证明不等式的逻辑推理方法.
教学重点:定理1,2,3的证明的证明思路和推导过程
教学难点:理解证明不等式的逻辑推理方法
教学方法:引导式
教学过程
一、复习回顾
上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:
这一节课,我们将利用比较实数的方法, 来推证不等式的性质.
二、讲授新课
在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.
1.同向不等式:两个不等号方向相同的不等式,例如: 是同向不等式.
异向不等式:两个不等号方向相反的不等式.例如: 是异向不等式.
2.不等式的性质:
定理1:若 ,则
定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向.在证明时,既要证明充分性,也要证明必要性.
证明
由正数的相反数是负数,得
说明:定理1的后半部分可引导学生仿照前半部分推证,注意向学生强调实数运算的符号法则的应用.
定理2:若 ,且 ,则 .
证明:
根据两个正数的和仍是正数,得
∴ 说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数.
定理3:若 ,则
定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.
证明
说明:
(1)定理3的证明相当于比较 与 的大小,采用的是求差比较法;
(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若 ,则 即 .
定理3推论:若 .
证明:
说明:
(1)推论的证明连续两次运用定理3然后由定理2证出;
(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;
(3)两个同向不等式的两边分别相减时,就不能作出一般的结论;
(4)定理3的逆命题也成立.(可让学生自证)
三、课堂练习
1.证明定理1后半部分;
2.证明定理3的逆定理.
说明:本节主要目的是掌握定理1,2,3的证明思路与推证过程,练习穿插在定理的证明过程中进行.
课堂小结
通过本节学习,要求大家熟悉定理1,2,3的证明思路,并掌握其推导过程,初步理解证明不等式的逻辑推理方法.
课后作业
1.求证:若
2.证明:若
板书设计
§6.1.2 不等式的性质
1.同向不等式 3.定理2 4.定理3 5.定理3
异向不等式
证明 证明 推论
2.定理1 证明 说明 说明 证明
第三课时
教学目标
1.熟练掌握定理1,2,3的应用;
2.掌握并会证明定理4及其推论1,2;
3.掌握反证法证明定理5.
教学重点:定理4,5的证明.
教学难点:定理4的应用.
教学方法:引导式
教学过程:
一、复习回顾
上一节课,我们一起
学习了不等式的三个性质,即定理1,2,3,并初步认识了证明不等式的逻辑推理方法,首先,让我们来回顾一下三个定理的基本内容.
(学生回答)
好,我们这一节课将继续推论定理4、5及其推论,并进一步熟悉不等式性质的应用.
二、讲授新课
定理4:若
若
证明:
根据同号相乘得正,异号相乘得负,得
当
说明:(1)证明过程中的关键步骤是根据“同号相乘得正,异号相乘得负”来完成的;
(2)定理4证明在一个不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变.
推论1:若
证明:
①
又
∴ ②
由①、②可得 .
说明:(1)上述证明是两次运用定理4,再用定理2证出的;
(2)所有的字母都表示正数,如果仅有 ,就推不出 的结论.
(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.
推论2:若
说明:(1)推论2是推论1的特殊情形;
(2)应强调学生注意n∈N 的条件.
定理5:若
我们用反证法来证明定理5,因为反面有两种情形,即 ,所以不能仅仅否定了 ,就“归谬”了事,而必须进行“穷举”.
说明:假定 不大于 ,这有两种情况:或者 ,或者 .
由推论2和定理1,当 时,有 ;
当 时,显然有
这些都同已知条件 矛盾
所以 .
接下来,我们通过具体的例题来熟悉不等式性质的应用.
例2 已知
证明:由
例3 已知
证明:∵
两边同乘以正数
说明:通过例3,例4的学习,使学生初步接触不等式的证明,为以后学习不等式的证明打下基础.在应用定理4时,应注意题目条件,即在一个等式两端乘以同一个数时,其正负将影响结论.接下来,我们通过练习来进一步熟悉不等式性质的应用.
三、课堂练习
课本P7练习1,2,3.
课堂小结
通过本节学习,大家要掌握不等式性质的应用及反证法证明思路,为以后不等式的证明打下一定的基础.
课后作业
课本习题6.1 4,5.
板书设计
§6.1.3 不等式的性质
定理4 推论1 定理5 例3 学生
内容 内容
证明 推论2 证明 例4 练习
2024高三数学优质课教案 篇13
一、教学目标
【知识与技能】
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】
通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点
【重点】
掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】
二元二次方程与圆的一般方程及标准圆方程的关系。
三、教学过程
(一)复习旧知,引出课题
1、复习圆的标准方程,圆心、半径。
2、提问
已知圆心为(1,—2)、半径为2的圆的方程是什么?